

Welcome to the PyDvi documentation!

Note

The official Home Page of PyDvi is located at http://fabricesalvaire.github.io/PyDVI

If you are at http://readthedocs.org then you are reading the so called latest documentation.

The latest documentation [image: PyDvi@readthedocs-badge] [http://pydvi.readthedocs.org/en/latest] is automatically built from the
git repository after each commit.

As opposite the PyDvi Home Page [http://fabricesalvaire.github.io/PyDVI] is built manually and is thus less prone to errors.

Introduction

PyDvi is a Python [http://python.org] library to read and process DVI (DeVice Independent) files, the native output
of the famous TeX typesetting program implemented by Donald E. Knuth [http://www-cs-faculty.stanford.edu/~uno].

PyDvi is also able to read most of the file formats associated to the TeX world like packed font,
virtual font, TeX font metric, font map and font encoding. It can also read Adobe Font Metrics files.

Basically a DVI file describes the layout of a page by a list of opcodes that interact with a
register machine to update the position on the page, to load fonts and to paint glyphs and rules. In
short it contains the glyphs and their positions on the page. Since TeX was designed to layout the
series of books The Art of Computer Programming at the beginning of the eighties, it focuses on
texts and mathematical expressions. Thus DVI is much simpler than Postscript or its successor PDF
which are designed for graphics. However we can extend the capabilities of DVI using the special
opcode which can contain any text like Postscript snippets.

A DVI stream can come from a file or a TeX daemon in order to render TeX inputs on-the-fly.

The DVI parser of PyDvi builds a program from a DVI stream that could be later processed by the
provided DVI machine which is designed to be subclassed by the user.

The source code includes an experimental DVI viewer as exemple which uses the OpenGL API for the
rendering and thus feature an hardware accelerated rendering. PyDvi and the viewer can be used as a
platform to experiment complex text rendering on GPU.

The source code includes also a clone of the dvipng tool to render DVI to PNG image. This tool is
mainly intended to check the compliance of PyDvi by image comparison.

PyDvi can be used for several purpose, we will review them in the followings:

TeX is a major and historical typesetting program. PyDvi can serve to read and process its output
using Python. The user can be a curious pearson who want to lean TeX or somebody interested by TeX
postprocessing.

TeX is one of the oldest computer program still in activity. The reason is quite simple, these
algorithms do the right job, its ecosystem is rich and its code is not so simple. Thus nobody
succeeds to reimplement it up to now, excepted its mathematical layout algorithms by the MathJax [http://www.mathjax.org]
Javascript library which is intended to bring Mathematical layout to web browser. Before the
delivery of Mathjax, the only solution to render properly mathematical content was to generate an
image using a program like dvipng [http://savannah.nongnu.org/projects/dvipng]. It is what does the engine of Wikipedia behind the scene.
Usually these programs like Asymptote [http://asymptote.sourceforge.net] or Circuit_macros [https://ece.uwaterloo.ca/~aplevich/Circuit_macros] generate the graphics as a PDF
document and then include this document in a LaTeX document which contains the labels placed at
absolute positions in the page. With PyDvi we can try another approach which consists to send TeX
content to a daemon and get back the glyphs and their positions. Matplotlib [http://matplotlib.org] uses this approach to
render LaTeX labels.

Installation

The procedure to install PyDvi is described in the Installation Manual.

Testing

Some examples are provided with PyDvi, see the example section.

Documentation

	PyDvi Reference Manual

	Bibliography

Overview

	1. Installation
	1.1. Dependencies

	1.2. Installation from PyPi Repository

	1.3. Installation from Source

	2. Examples

	3. API Documentation
	3.1. PyDvi
	3.1.1. Config

	3.1.2. Dvi

	3.1.3. Font

	3.1.4. Kpathsea

	3.1.5. Logging

	3.1.6. OpcodeParser

	3.1.7. TeXUnit

	3.1.8. TexDaemon

	3.1.9. Tools

	3.1.10. Version

	3.2. PyDviPng
	3.2.1. Config

	3.2.2. DviMachine

	3.2.3. Logging

	3.3. PyDviGui
	3.3.1. Config

	3.3.2. DviGlViewer

	3.3.3. DviViewer

	3.3.4. FontViewer

	3.3.5. Logging

	3.3.6. Tools

	3.3.7. Widgets

	3.3.8. ui

	3.4. Indexes

	4. Bibliography
	4.1. Device-Independent File Format

	4.2. Packet Font File Format

	4.3. Virtual Font File Format

	4.4. Relevant Softwares
	4.4.1. TeX Engine

	4.4.2. Scientific Plotting

	4.4.3. DVI to Image Converter

	4.4.4. DVI Viewer

	4.4.5. DVI Tools

	4.4.6. TeX Fonts

	4.4.7. Font Viewer

1. Installation

The installation of PyDvi by itself is quite simple. However it will be easier to get the
dependencies on a Linux desktop.

1.1. Dependencies

PyDvi requires the following dependencies:

	Python [http://python.org]

	Numpy [http://www.numpy.org]

	freetype-py [https://github.com/rougier/freetype-py] for Type1 font rendering

The OpenGL DVI viewer requires these additional dependencies:

	pyqt [http://www.riverbankcomputing.co.uk/software/pyqt/intro]

	PyOpenGLng [https://github.com/FabriceSalvaire/PyOpenGLng]

The DVI to PNG tool requires these additional dependencies:

	pillow [http://pillow.readthedocs.org/en/latest/index.html]

Also it is recommanded to have these Python modules:

	pip

	virtualenv

For development, you will need in addition:

	Sphinx [http://sphinx-doc.org]

1.2. Installation from PyPi Repository

PyDvi is made available on the PyPI [https://pypi.python.org/pypi] repository at https://pypi.python.org/pypi/PyDVI

Run this command to install the last release:

pip install PyDvi

1.3. Installation from Source

The PyDvi source code is hosted at https://github.com/FabriceSalvaire/PyDVI

To clone the Git repository, run this command in a terminal:

git clone git@github.com:FabriceSalvaire/PyDvi.git

Then to build and install PyDvi run these commands:

python setup.py build
python setup.py install

2. Examples

[image: _images/dvi-gl-viewer.scaled.png]
The program gui/dvi-gl-viewer is a DVI viewer demonstrator with a rendering accelerated by GPU
using the OpenGL API.

The program gui/font-viewer is a tool to display font glyph.

To run the unit tests use this shell command:

for i in unit_test/*.py; do python $i; done

To run the test programs do:

python test/test-dvi-machine tex-samples/text.cmr.latin1.dvi
python test/test_encoding.py ec.enc
python test/test_font_manager.py
python test/test_font_map.py pdftex.map
python test/test_pkfont.py cmr10
python test/test_tex_daemon.py
python test/test_tfm.py cmr10

3. API Documentation

This is the auto-generated API documentation for the PyDvi library.

Note

The docstings and the code need a review. Most of the code was written a long time ago
(for Python 2.4).

Warning

The API documentation is automatically generated from the docstrings in the source
using the Sphinx tool. This way to produce the documentation is know to be perfectible
actually, but not too bad.

Contents:

	3.1. PyDvi
	3.1.1. Config

	3.1.2. Dvi

	3.1.3. Font

	3.1.4. Kpathsea

	3.1.5. Logging

	3.1.6. OpcodeParser

	3.1.7. TeXUnit

	3.1.8. TexDaemon

	3.1.9. Tools

	3.1.10. Version

	3.2. PyDviPng
	3.2.1. Config

	3.2.2. DviMachine

	3.2.3. Logging

	3.3. PyDviGui
	3.3.1. Config

	3.3.2. DviGlViewer

	3.3.3. DviViewer

	3.3.4. FontViewer

	3.3.5. Logging

	3.3.6. Tools

	3.3.7. Widgets

	3.3.8. ui

3.4. Indexes

	Index

	Module Index

	Search Page

3.1. PyDvi

	3.1.1. Config
	3.1.1.1. ConfigInstall

	3.1.2. Dvi
	3.1.2.1. DviMachine

	3.1.2.2. DviParser

	3.1.3. Font
	3.1.3.1. AfmParser

	3.1.3.2. Encoding

	3.1.3.3. Font

	3.1.3.4. FontManager

	3.1.3.5. FontMap

	3.1.3.6. PkFont

	3.1.3.7. PkFontParser

	3.1.3.8. PkGlyph

	3.1.3.9. Tfm

	3.1.3.10. TfmParser

	3.1.3.11. Type1Font

	3.1.3.12. VirtualCharacter

	3.1.3.13. VirtualFont

	3.1.3.14. VirtualFontParser

	3.1.4. Kpathsea

	3.1.5. Logging
	3.1.5.1. Logging

	3.1.6. OpcodeParser

	3.1.7. TeXUnit

	3.1.8. TexDaemon

	3.1.9. Tools
	3.1.9.1. DaemonSubprocess

	3.1.9.2. EnumFactory

	3.1.9.3. FuncTools

	3.1.9.4. Interval

	3.1.9.5. Logging

	3.1.9.6. Path

	3.1.9.7. RevisionVersion

	3.1.9.8. Stream

	3.1.9.9. TexCommentedFile

	3.1.10. Version

3.1.1. Config

	3.1.1.1. ConfigInstall

3.1.1.1. ConfigInstall

	
class PyDvi.Config.ConfigInstall.Logging

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
default_config_file = 'logging.yml'

	

	
directories = ('/home/docs/checkouts/readthedocs.org/user_builds/pydvi/envs/latest/local/lib/python2.7/site-packages/PyDvi/Config',)

	

	
static find(config_file)

	

	
class PyDvi.Config.ConfigInstall.Path

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
config_directory = '/home/docs/checkouts/readthedocs.org/user_builds/pydvi/envs/latest/local/lib/python2.7/site-packages/PyDvi/Config'

	

	
pydvi_module_directory = '/home/docs/checkouts/readthedocs.org/user_builds/pydvi/envs/latest/local/lib/python2.7/site-packages/PyDvi'

	

3.1.2. Dvi

	3.1.2.1. DviMachine

	3.1.2.2. DviParser

3.1.2.1. DviMachine

	
class PyDvi.Dvi.DviMachine.Opcode_set_char(char_code)

	Bases: PyDvi.Dvi.DviMachine.Opcode_putset_char

This class implements the set_char opcode.

	
class PyDvi.Dvi.DviMachine.Opcode_put_char(char_code)

	Bases: PyDvi.Dvi.DviMachine.Opcode_putset_char

This class implements the put_char opcode.

	
class PyDvi.Dvi.DviMachine.Opcode_set_rule(height, width)

	Bases: PyDvi.Dvi.DviMachine.Opcode_putset_rule

This class implements the set_rule opcode.

	
class PyDvi.Dvi.DviMachine.Opcode_put_rule(height, width)

	Bases: PyDvi.Dvi.DviMachine.Opcode_putset_rule

This class implements the put_rule opcode.

	
class PyDvi.Dvi.DviMachine.Opcode_push

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the push opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_pop(n=1)

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the pop opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_push_colour(colour)

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the push_colour opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_pop_colour(n=1)

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the pop_colour opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_right(x)

	Bases: PyDvi.Dvi.DviMachine.OpcodeX

This class implements the right opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_w0

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the w0 opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_w(x)

	Bases: PyDvi.Dvi.DviMachine.OpcodeX

This class implements the w opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_x0

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the x0 opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_x(x)

	Bases: PyDvi.Dvi.DviMachine.OpcodeX

This class implements the x opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_down(x)

	Bases: PyDvi.Dvi.DviMachine.OpcodeX

This class implements the down opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_y0

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the y0 opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_y(x)

	Bases: PyDvi.Dvi.DviMachine.OpcodeX

This class implements the y opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_z0

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the z0 opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_z(x)

	Bases: PyDvi.Dvi.DviMachine.OpcodeX

This class implements the z opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_font(font_id)

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the font opcode.

	
run(dvi_machine, compute_bounding_box=False)

	

	
class PyDvi.Dvi.DviMachine.Opcode_xxx(code)

	Bases: PyDvi.Dvi.DviMachine.Opcode

This class implements the xxx opcode.

	
class PyDvi.Dvi.DviMachine.DviFont(font_id, name, checksum, scale_factor, design_size)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements a DVI Font.

	
char_scaled_depth(tfm_char)

	Return the scale depth for the PyDvi.TfmChar instance.

	
char_scaled_height(tfm_char)

	Return the scale height for the PyDvi.TfmChar instance.

	
char_scaled_width(tfm_char)

	Return the scale width for the PyDvi.TfmChar instance.

	
class PyDvi.Dvi.DviMachine.DviColourBlack

	Bases: PyDvi.Dvi.DviMachine.DviColour

This class implements the black colour.

	
class PyDvi.Dvi.DviMachine.DviColourGray(gray_level)

	Bases: PyDvi.Dvi.DviMachine.DviColour

This class implements gray colour.

	
class PyDvi.Dvi.DviMachine.DviColourRGB(red, green, blue, alpha=1)

	Bases: PyDvi.Dvi.DviMachine.DviColour

This class implements RGB colour.

	
class PyDvi.Dvi.DviMachine.DviColourCMYK(cyan, magenta, yellow, dark)

	Bases: PyDvi.Dvi.DviMachine.DviColour

This class implements CMYK colour.

	
class PyDvi.Dvi.DviMachine.DviProgam

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements a DVI program.

	
append_page(i)

	

	
dvi_font_iterator()

	

	
get_font(i)

	

	
print_summary()

	

	
register_font(font)

	Register a DviFont instance.

	
set_postambule_data(max_height, max_width, stack_depth, number_of_pages)

	Set the postamble data.

	
set_preambule_data(comment, dvi_format, numerator, denominator, magnification)

	Set the preambule data.

	
class PyDvi.Dvi.DviMachine.DviProgramPage(page_number, height=0, width=0, paper_orientation=0)

	Bases: list [https://docs.python.org/2/library/functions.html#list]

This class defines a page.

	
print_program()

	Print the program.

	
set_paper_size(height, width)

	Set the paper size in mm.

	
class PyDvi.Dvi.DviMachine.DviSubroutine

	Bases: list [https://docs.python.org/2/library/functions.html#list]

	
class PyDvi.Dvi.DviMachine.DviMachine(font_manager)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements a DVI Machine.

	
_adjust_opcode_counts(opcode_program, virtual_font, characters)

	

	
_adjust_opcode_counts_for_virtual_characters(opcode_program)

	

	
_load_dvi_fonts()

	Load the fonts used by the DVI program.

	
_logger = <logging.Logger object>

	

	
_reset()

	Reset the machine.

	
begin_run_page()

	

	
compute_page_bounding_box(page_index)

	

	
count_opcodes(opcode_program)

	

	
current_colour

	Return the current colour.

	
current_dvi_font

	Return the current dvi font.

	
current_font

	Return the current font.

	
current_font_id

	

	
end_run_page()

	

	
is_current_font_virtual

	

	
load_dvi_program(dvi_program, load_fonts=True)

	Load a DviProgam instance.

	
paint_char(x, y, char_bounding_box, font, dvi_font, char_code)

	

	
paint_rule(x, y, width, height)

	

	
pop_colour(n=1)

	Pop n level in the colour stack.

	
pop_registers(n=1)

	Pop n level in the register set stack.

	
push_colour(colour)

	Push the current colour.

	
push_registers(reset=False)

	Push the register set.

	
registers

	Return the current register set.

	
run_page(page_index, **kwargs)

	

	
run_subroutine(subroutine)

	

	
simplify_dvi_program()

	Simplify the DVI program.

	
class PyDvi.Dvi.DviMachine.DviSimplifyMachine(font_manager)

	Bases: PyDvi.Dvi.DviMachine.DviMachine

	
process_page_xxx_opcodes(program_page)

	Process the xxx opcodes in the page program.

	
simplify(simplify_opcodes=False)

	Simplify the program.

	
simplify_page(program_page)

	Simplify the page.

	
transform_xxx_colour(program_page, xxx_code)

	Transform a xxx colour opcode.

	
transform_xxx_paper_orientation(program_page, xxx_code)

	Transform a xxx paper orientation opcode.

	
transform_xxx_paper_size(program_page, xxx_code)

	Transform a xxx paper size opcode.

	
xxx_colour = 'color '

	Defines colour special

	
xxx_landscape = '! /landplus90 true store'

	Defines landscape special

	
xxx_papersize = 'papersize='

	Defines papersize special

3.1.2.2. DviParser

This module implements a DVI Stream Parser.

	
class PyDvi.Dvi.DviParser.DviParser

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements a DVI Stream Parser.

	
_logger = <logging.Logger object>

	

	
_process_pages_backward()

	Process the pages in backward order.

	
_process_postambule()

	Process the postamble where we get the number of pages and the fonts.

	
_process_preambule()

	Process the preamble where we get the magnification.

	
_reset()

	Reset the DVI parser.

	
process_page()

	

	
process_page_forward()

	

	
process_stream(stream)

	Process a DVI stream and return a DviProgam instance.

	
class PyDvi.Dvi.DviParser.DviSubroutineParser(stream)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
parse()

	

	
class PyDvi.Dvi.DviParser.OpcodeParser_fnt_def(opcode)

	Bases: PyDvi.OpcodeParser.OpcodeParser

This class parse the fnt_def opcode.

	
base_opcode = 243

	

	
read_parameters(dvi_parser)

	

	
class PyDvi.Dvi.DviParser.OpcodeParser_font(opcode)

	Bases: PyDvi.OpcodeParser.OpcodeParser

This class parse the font opcode.

	
read_parameters(dvi_parser)

	

	
class PyDvi.Dvi.DviParser.OpcodeParser_set_char(opcode)

	Bases: PyDvi.OpcodeParser.OpcodeParser

This class parse the set_char opcode.

	
read_parameters(dvi_parser)

	

	
class PyDvi.Dvi.DviParser.OpcodeParser_xxx(opcode)

	Bases: PyDvi.OpcodeParser.OpcodeParser

This class parse the xxx opcode.

	
base_opcode = 239

	

	
read_parameters(dvi_parser)

	

3.1.3. Font

	3.1.3.1. AfmParser

	3.1.3.2. Encoding

	3.1.3.3. Font

	3.1.3.4. FontManager

	3.1.3.5. FontMap

	3.1.3.6. PkFont

	3.1.3.7. PkFontParser

	3.1.3.8. PkGlyph

	3.1.3.9. Tfm

	3.1.3.10. TfmParser

	3.1.3.11. Type1Font

	3.1.3.12. VirtualCharacter

	3.1.3.13. VirtualFont

	3.1.3.14. VirtualFontParser

3.1.3.1. AfmParser

Reference: Adobe Font Metrics File Format Specification, Version 4.1, 7 October 1998

All measurements in AFM files are given in terms of units equal to 1/1000 of the scale factor (point
size) of the font being used. To compute actual sizes in a document (in points; with 72 points = 1
inch), these amounts should be multiplied by (scale factor of font) / 1000.

	
class PyDvi.Font.AfmParser.AfmParser(filename)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
_get_values(types, line)

	

	
_logger = <logging.Logger object>

	

	
_parse(stream)

	

	
_parse_end(line)

	

	
_parse_key_values(keys, line)

	

	
_parse_key_values_list(keys, line)

	

	
_parse_start(line)

	

	
static parse(filename)

	

	
exception PyDvi.Font.AfmParser.BadAfmFile

	Bases: exceptions.NameError [https://docs.python.org/2/library/exceptions.html#exceptions.NameError]

	
PyDvi.Font.AfmParser.boolean(x)

	

	
PyDvi.Font.AfmParser.hex(x)

	

3.1.3.2. Encoding

This module handles TeX encoding file.

An encoding file map the glyph index with its symbolic name. It uses the .enc extension.

For example, the content of cork.enc is:

/CorkEncoding [% now 256 chars follow
% 0x00
 /grave /acute /circumflex /tilde /dieresis /hungarumlaut /ring /caron
 /breve /macron /dotaccent /cedilla
 /ogonek /quotesinglbase /guilsinglleft /guilsinglright
...
% 0xF0
 /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /oe
 /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /germandbls
] def

The percent character is used for comment as for TeX.

The content of this file can be parsed using:

cork_encoding = Encoding('/usr/share/texmf/fonts/enc/dvips/base/cork.enc')

The encoding’s name can be retrieved using:

>>> cork_encoding.name
'CorkEncoding'

The number of glyphes can be obtained using the function len() [https://docs.python.org/2/library/functions.html#len]:

>>> len(cork_encoding)
256

The index of the glyph eth can be retrieved using:

>>> cork_encoding['eth']
0xF0

and reciprocally:

>>> cork_encoding[0xF0]
'eth'

The methods to_index() and to_name() are used internally for this purpose.

	
class PyDvi.Font.Encoding.Encoding(filename)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Parse an encoding file and store the association between the index and the glyph’s name.

Public attributes are:

name

	
_parse_glyph_names(line)

	Find glyph names in line, as ‘/grave /acute /circumflex ...’.

	
_parse_name(line)

	Find the encoding name at the left of the line, as ‘/CorkEncoding’.

	
print_summary()

	

	
to_index(name)

	Return the glyph index corresponding to the symbolic name.

	
to_name(i)

	Return the symbolic name corresponding to the glyph index i.

3.1.3.3. Font

This module provides a base class for font type managed by the font manager.

	
class PyDvi.Font.Font.Font(font_manager, font_id, name)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class is a base class for font managed by the Font Manager.

Class attributes to be defined in subclass:

	font_type

	font type enumerate

	font_type_string

	description of the font type

	extension

	file extension

To create a Font instance use:

font = Font(font_manager, font_id, name)

where font_manager is a PyDvi.FontManager.FontManager instance, font_id is the font
id provided by the font manager and name is the font name, “cmr10” for example.

	
_find_font(kpsewhich_options=None)

	Find the font file location in the system using Kpathsea.

	
_find_tfm()

	Find the TFM file location in the system using Kpathsea and load it.

	
basename()

	Return the basename.

	
extension = None

	

	
font_type = None

	

	
font_type_string = None

	

	
is_virtual

	

	
print_header()

	

	
print_summary()

	

	
PyDvi.Font.Font.font_types

	Font Type Enumerate

alias of FontTypes

	
PyDvi.Font.Font.sort_font_class(*args)

	Sort a list of Font instance by font type enumerate.

3.1.3.4. FontManager

3.1.3.5. FontMap

This module handles font map files.

A font map file gives the correspondance between the TeX PK fonts and their PostScript
equivalents. These files use the .map extension.

For example, the file pdftex.map contains lines like this one:

futbo8r Utopia-Bold ".167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <putb8a.pfb

Each line describes a PK font using the following format:

PK_FONT_NAME PS_FONT_NAME "PostScript snippet" <FILE_NAME1 <FILE_NAME2

The first word is the TeX font name and the second word is the PostScript font name. The PostScript
font name can be omitted if it is the same than for TeX. The word starting by “<” are filenames to
be included in the PostScript file. A filename with the extension .enc is an encoding file and a
filename with the extension .pfb is a Printer Font Binary file. The text enclosed by double
quotes is optional and gives a PostScript snippet to be inserted in the PostScript file. It can be
placed at the end of the line.

The percent character is used for comment as for TeX.

References:

	The Font Installation Guide Using Postscript fonts to their full potential with Latex. Originally
written by Philipp Lehman. December 2004. Revision 2.14. cf. Creating map files Part.
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide

	updmap(1) - Update font map files for TeX output drivers.

	updmap.cfg(5) - Configuration of font mapping/inclusion for dvips and friends

To parse the font map pdftex.map do:

font_map = FontMap('/usr/share/texmf/fonts/map/pdftex/updmap/pdftex.map')

Each entry is stored in a FontMapEntry instance and can be retrieved using its TeX name as
key:

font_map_entry = font_map['futbo8r']

The .pfb file name and the other parameters are stored as attributes:

>>> font_map_entry.pfb_filename
'putb8a.pfb'

	
class PyDvi.Font.FontMap.FontMap(filename)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class parses a font map file.

	
static _parse_effects(ps_snippet)

	Parse the PostScript snippet.

	
_parse_line(line)

	Parse a line.

	
_register_entry(font_map_entry)

	Register a font map entry.

	
print_summary()

	

	
class PyDvi.Font.FontMap.FontMapEntry(tex_name, ps_font_name, ps_snippet, effects, encoding, pfb_filename)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class encapsulates a font map entry.

Public attributes:

tex_name

ps_font_name

ps_snippet

effects

encoding

pfb_filename

	
print_summary()

	

3.1.3.6. PkFont

3.1.3.7. PkFontParser

3.1.3.8. PkGlyph

3.1.3.9. Tfm

This module handles TeX Font Metric.

The class PyDvi.Tfm handles the font’s metric. To get a PyDvi.Tfm instance for a
particular font use the static method PyDvi.TfmParser.TfmParser.parse(). For example use this
code for the font “cmr10”:

tfm = TfmParser.parse('cmr10', '/usr/share/texmf/fonts/tfm/public/cm/cmr10.tfm')

The number of characters in the font can be obtained using the function len() [https://docs.python.org/2/library/functions.html#len]:

>>> len(tfm)
128

Each character’s metric is stored in a TfmChar instance that can be accessed using the char
code as index on the Tfm class instance. For example to get the metric of the character
“A” use:

tfm[ord('A')]

	
class PyDvi.Font.Tfm.Tfm(font_name, filename, smallest_character_code, largest_character_code, checksum, design_font_size, character_coding_scheme, family)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class encapsulates a TeX Font Metric for a font.

Public attributes:

	font_name

	font’s name

	filename

	”.tfm” filename

	smallest_character_code

	smallest character code of the font

	largest_character_code

	largest character code of the font

	checksum

	checksum of the tfm file

	design_font_size

	design font size

	character_coding_scheme

	character coding scheme

	family

	font’s family

slant

spacing

space_stretch

space_shrink

x_height

quad

extra_space

In addition for Math font, the following public attributes are available:

um1

num2

num3

denom1

denom2

sup1

sup2

sup3

sub1

sub2

supdrop

subdrop

delim1

delim2

axis_height

default_rule_thickness

big_op_spacing

The number of characters can be queried using len() [https://docs.python.org/2/library/functions.html#len]. The TfmChar instance for a
character code char_code can be set or get using the operator [].

	
add_lig_kern(obj)

	Add a ligature/kern program obj.

	
get_lig_kern_program(i)

	Return the ligature/kern program at index i.

	
print_summary()

	

	
set_font_parameters(parameters)

	Set the font parameters.

	
set_math_extension_parameters(parameters)

	Set the math extension parameters.

	
set_math_symbols_parameters(parameters)

	Set the math symbols parameters.

	
class PyDvi.Font.Tfm.TfmChar(tfm, char_code, width, height, depth, italic_correction, lig_kern_program_index=None, next_larger_char=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class encapsulates a TeX Font Metric for a Glyph.

Public attributes:

char_code

width

height

depth

italic_correction

	
chr()

	Return the character string from its char code if it is printable.

	
get_lig_kern_program()

	Get the ligature/kern program of the character.

	
next_larger_tfm_char()

	Return the TfmChar instance for the next larger char if it exists else return
None [https://docs.python.org/2/library/constants.html#None].

	
print_summary()

	

	
printable = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

	List of the printable characters.

	
scaled_depth(scale_factor)

	Return the scaled depth by scale_factor.

	
scaled_dimensions(scale_factor)

	Return the 3-tuple made of the scaled width, height and depth by scale_factor.

	
scaled_height(scale_factor)

	Return the scaled height by scale_factor.

	
scaled_width(scale_factor)

	Return the scaled width by scale_factor.

	
class PyDvi.Font.Tfm.TfmExtensibleChar(tfm, char_code, width, height, depth, italic_correction, extensible_recipe, lig_kern_program_index=None, next_larger_char=None)

	Bases: PyDvi.Font.Tfm.TfmChar

This class encapsulates a TeX Font Metric for an extensible Glyph.

Public attributes:

top

mid

bot

rep

	
class PyDvi.Font.Tfm.TfmKern(tfm, index, stop, next_char, kern)

	Bases: PyDvi.Font.Tfm.TfmLigKern

This class represents a Kerning Program Instruction.

Public Attributes:

	next_char

	next character

	kern

	kerning value

	
class PyDvi.Font.Tfm.TfmLigature(tfm, index, stop, next_char, ligature_char_code, number_of_chars_to_pass_over, current_char_is_deleted, next_char_is_deleted)

	Bases: PyDvi.Font.Tfm.TfmLigKern

This class represents a Ligature Program Instruction.

Public Attributes:

	next_char

	next character

	ligature_char_code

	ligature character code

	current_char_is_deleted

	the current characters must be deleted of the stream

	next_char_is_deleted

	the next characters must be deleted of the stream

	number_of_chars_to_pass_over

	number of characters to pass over

3.1.3.10. TfmParser

The TfmParser module provides a tool to parse TeX Font Metric file. TFM files contain the
metrics for TeX fonts. They have the ”.tfm” extension.

To parse a TFM file and get a PyDvi.Tfm instance, use the static method
TfmParser.parse(). For example use this code for the font “cmr10”:

tfm = TfmParser.parse('cmr10', '/usr/share/texmf/fonts/tfm/public/cm/cmr10.tfm')

The TFM file format in descriped in the tftopl.web file from Web2C. Part of this
documentation comes from this file.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is
always a multiple of 4, we could also regard the file as a sequence of 32-bit words. Note that the
bytes are considered to be unsigned numbers.

	
class PyDvi.Font.TfmParser.TfmParser(font_name, filename)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class parse a TFM file.

	
_position_in_table(table, index)

	Return a pointer to the word element at index in the table table.

	
_print_summary()

	

	
_process_char(c)

	Process the character code c in the character information table.

	
_read_char_info(c)

	Read the character code c data in the character information table.

	
_read_characters()

	Next comes the char info array, which contains one char info word per character. Each
char info word contains six fields packed into four bytes as follows.

	first byte: width_index (8 bits)

	second byte: height_index (4 bits) times 16, plus depth index (4 bits)

	third byte: italic_index (6 bits) times 4, plus tag (2 bits)

	fourth byte: remainder (8 bits)

The actual width of a character is width[width_index], in design-size units; this is a
device for compressing information, since many characters have the same width. Since it is
quite common for many characters to have the same height, depth, or italic correction, the
TFM format imposes a limit of 16 different heights, 16 different depths, and 64 different
italic corrections.

Incidentally, the relation width[0] = height[0] = depth[0] = italic[0] = 0 should
always hold, so that an index of zero implies a value of zero. The width index should never
be zero unless the character does not exist in the font, since a character is valid if and
only if it lies between bc and ec and has a nonzero width index.

The tag field in a char info word has four values that explain how to interpret the remainder field.

	tag = 0 (no_tag) means that remainder is unused.

	tag = 1 (lig_tag) means that this character has a ligature/kerning program
starting at lig_kern[remainder].

	tag = 2 (list_tag) means that this character is part of a chain of characters of
ascending sizes, and not the largest in the chain. The remainder field gives the
character code of the next larger character.

	tag = 3 (ext_tag) means that this character code represents an extensible
character, i.e., a character that is built up of smaller pieces so that it can be made
arbitrarily large. The pieces are specified in exten[remainder].

	no_tag = 0 vanilla character

	lig_tag = 1 character has a ligature/kerning program

	list_tag = 2 character has a successor in a charlist

	ext_tag = 3 character is extensible

	
_read_extensible_recipe(index)

	Return the extensible recipe, four numbers, at index index.

Extensible characters are specified by an extensible recipe, which consists of four bytes
called top, mid, bot, and rep (in this order). These bytes are the character codes of
individual pieces used to build up a large symbol. If top, mid, or bot are zero, they are
not present in the built-up result. For example, an extensible vertical line is like an
extensible bracket, except that the top and bottom pieces are missing.

	
_read_fix_word_in_table(table, index)

	Return the fix word in table table at index index.

	
_read_font_parameters()

	The final portion of a TFM fie is the param array, which is another sequence of fix word
values.

	param[1] = slant is the amount of italic slant, which is used to help position
accents. For example, slant = .25 means that when you go up one unit, you also go .25
units to the right. The slant is a pure number; it’s the only fix word other than the
design size itself that is not scaled by the design size.

	param[2] = space is the normal spacing between words in text. Note that character ” ”
in the font need not have anything to do with blank spaces.

	param[3] = space_stretch is the amount of glue stretching between words.

	param[4] = space_shrink is the amount of glue shrinking between words.

	param[5] = x_height is the height of letters for which accents don’t have to be
raised or lowered.

	param[6] = quad is the size of one em in the font.

	param[7] = extra_space is the amount added to param[2] at the ends of sentences.

When the character coding scheme is TeX math symbols, the font is supposed to have 15
additional parameters called num1, num2, num3, denom1, denom2, sup1,
sup2, sup3, sub1, sub2, supdrop, subdrop, delim1, delim2,
and axis_height, respectively. When the character coding scheme is TeX math
extension, the font is supposed to have six additional parameters called
defaul_rule_thickness and big_op_spacing1 through big_op_spacing5.

	
_read_four_byte_numbers_in_table(table, index)

	Return the four numbers in table table at index index.

	
_read_header()

	The first data array is a block of header information, which contains general facts
about the font. The header must contain at least two words, and for TFM files to be used
with Xerox printing software it must contain at least 18 words, allocated as described
below.

header[0] is a 32-bit check sum that TEX will copy into the DVI output file whenever it
uses the font. Later on when the DVI file is printed, possibly on another computer, the
actual font that gets used is supposed to have a check sum that agrees with the one in the
TFM file used by TEX. In this way, users will be warned about potential incompatibilities.
(However, if the check sum is zero in either the font file or the TFM file, no check is
made.) The actual relation between this check sum and the rest of the TFM file is not
important; the check sum is simply an identification number with the property that
incompatible fonts almost always have distinct check sums.

header[1] is a fix word containing the design size of the font, in units of TEX points
(7227 TEX points = 254 cm). This number must be at least 1.0; it is fairly arbitrary, but
usually the design size is 10.0 for a “10 point” font, i.e., a font that was designed to
look best at a 10-point size, whatever that really means. When a TEX user asks for a font
“at delta pt”, the effect is to override the design size and replace it by delta, and to
multiply the x and y coordinates of the points in the font image by a factor of delta
divided by the design size. All other dimensions in the TFM file are fix word numbers in
design-size units. Thus, for example, the value of param[6], one em or \quad, is
often the fix word value 2**20 = 1.0, since many fonts have a design size equal to one
em. The other dimensions must be less than 16 design-size units in absolute value; thus,
header[1] and param[1] are the only fix word entries in the whole TFM file whose
first byte might be something besides 0 or 255.

header[2 ... 11], if present, contains 40 bytes that identify the character coding
scheme. The first byte, which must be between 0 and 39, is the number of subsequent ASCII
bytes actually relevant in this string, which is intended to specify what
character-code-to-symbol convention is present in the font. Examples are ASCII for standard
ASCII, TeX text for fonts like cmr10 and cmti9, TeX math extension for cmex10, XEROX text
for Xerox fonts, GRAPHIC for special-purpose non- alphabetic fonts, UNSPECIFIED for the
default case when there is no information. Parentheses should not appear in this name.
(Such a string is said to be in BCPL format.)

header[12 ... 16], if present, contains 20 bytes that name the font family (e.g., CMR or
HELVETICA), in BCPL format. This field is also known as the “font identifier.”

header[17], if present, contains a first byte called the seven_bit_safe_flag, then
two bytes that are ignored, and a fourth byte called the face. If the value of the fourth
byte is less than 18, it has the following interpretation as a “weight, slope, and
expansion”: Add 0 or 2 or 4 (for medium or bold or light) to 0 or 1 (for roman or italic) to
0 or 6 or 12 (for regular or condensed or extended). For example, 13 is 0+1+12, so it
represents medium italic extended. A three-letter code (e.g., MIE) can be used for such
face data.

header[18 ... whatever] might also be present; the individual words are simply called
header[18], header[19], etc., at the moment.

	
_read_lengths()

	The fist 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the
lengths of the various subsequent portions of the file. These twelve integers are, in order:

	lf = length of the entire file, in words;

	lh = length of the header data, in words;

	bc = smallest character code in the font;

	ec = largest character code in the font;

	nw = number of words in the width table;

	nh = number of words in the height table;

	nd = number of words in the depth table;

	ni = number of words in the italic correction table;

	nl = number of words in the lig/kern table;

	nk = number of words in the kern table;

	ne = number of words in the extensible character table;

	np = number of font parameter words.

They are all nonnegative and less than 2**15. We must have bc - 1 <= ec <= 255, ne <=
256, and

lf = 6 + lh + (ec - bc + 1) + nw + nh + nd + ni + nl + nk + ne + np.

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and
as few as 0 characters (if bc = ec + 1).

The rest of the TFM file may be regarded as a sequence of ten data arrays having the
informal specification:

	header
	array [0 ... lh - 1]
	of stuff

	char info
	array [bc ... ec]
	of char info word

	width
	array [0 ... nw - 1]
	of fix word

	height
	array [0 ... nh - 1]
	of fix word

	depth
	array [0 ... nd - 1]
	of fix word

	italic
	array [0 ... ni - 1]
	of fix word

	lig kern
	array [0 ... nl - 1]
	of lig kern command

	kern
	array [0 ... nk - 1]
	of fix word

	exten
	array [0 ... ne - 1]
	of extensible recipe

	param
	array [1 ... np]
	of fix word

	
_read_lig_kern_programs()

	The lig kern array contains instructions in a simple programming language that explains
what to do for special letter pairs. Each word is a lig kern command of four bytes.

	first byte: skip_byte, indicates that this is the final program step if the byte is
128 or more, otherwise the next step is obtained by skipping this number of intervening
steps.

	second byte: next_char, “if next_char follows the current character, then perform
the operation and stop, otherwise continue.”

	third byte: op_byte, indicates a ligature step if less than 128, a kern step otherwise.

	fourth byte: remainder.

In a kern step, an additional space equal to kern[256 * (op_byte + 128) + remainder] is
inserted between the current character and next char. This amount is often negative, so
that the characters are brought closer together by kerning; but it might be positive.

There are eight kinds of ligature steps, having op_byte codes 4a+2b+c where 0 <= a
<= b+c and 0 <= b; c <= 1. The character whose code is remainder is inserted between
the current character and next char; then the current character is deleted if b = 0, and
next char is deleted if c = 0; then we pass over a characters to reach the next current
character (which may have a ligature/kerning program of its own).

Notice that if a = 0 and b = 1, the current character is unchanged; if a = b and
c = 1, the current character is changed but the next character is unchanged.

If the very first instruction of the lig kern array has skip_byte = 255, the
next_char byte is the so-called right boundary character of this font; the value of
next_char need not lie between bc and ec. If the very last instruction of the
lig kern array has skip_byte = 255, there is a special ligature/kerning program for a
left boundary character, beginning at location 256 * op_byte + remainder. The
interpretation is that TEX puts implicit boundary characters before and after each
consecutive string of characters from the same font. These implicit characters do not
appear in the output, but they can affect ligatures and kerning.

If the very first instruction of a character’s lig_kern program has skip_byte > 128,
the program actually begins in location 256 * op_byte + remainder. This feature allows
access to large lig kern arrays, because the first instruction must otherwise appear in a
location <= 255.

Any instruction with skip_byte > 128 in the lig kern array must have 256 * op_byte +
remainder < nl. If such an instruction is encountered during normal program execution, it
denotes an unconditional halt; no ligature command is performed.

	
_seek_to_table(table)

	Seek to the table table.

	
static parse(font_name, filename)

	Parse the TFM filename for the font font_name and return a PyDvi.Tfm
instance.

	
static word_ptr(base, index)

	Compute the pointer to the word element index index from the base base. A word
element has a size of 32-bit.

prt = base + 4*index

3.1.3.11. Type1Font

3.1.3.12. VirtualCharacter

	
class PyDvi.Font.VirtualCharacter.VirtualCharacter(char_code, width, dvi)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
subroutine

	

3.1.3.13. VirtualFont

	
class PyDvi.Font.VirtualFont.VirtualFont(font_manager, font_id, name)

	Bases: PyDvi.Font.Font.Font

This class implements the virtual font type in the font manager.

	
_set_preambule_data(vf_id, comment, design_font_size, checksum)

	Set the preambule data from the Virtual Font Parser.

	
extension = 'vf'

	

	
font_type = 1

	

	
font_type_string = 'TeX Virtual Font'

	

	
load_dvi_fonts()

	

	
print_summary()

	

	
register_character(character)

	

	
register_font(font)

	Register a DviFont instance.

	
update_font_id_map()

	

3.1.3.14. VirtualFontParser

The VirtualFontParser module provides a tool to parse virtual font files. They have the ”.vf”
extension.

	
class PyDvi.Font.VirtualFontParser.VirtualFontParser(virtual_font)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
_logger = <logging.Logger object>

	

	
_process_file()

	Process the characters.

	
_process_preambule()

	Process the preamble.

	
opcode_parser_set

	

	
static parse(virtual_font)

	

3.1.4. Kpathsea

This module provides a wrapper for the Kpathsea library, cf. http://www.tug.org/kpathsea.

	
PyDvi.Kpathsea.kpsewhich(filename, file_format=None, options=None)

	Wrapper around the kpsewhich command, cf. kpsewhich(1).

	file_format

	used to specify the file format, see kpsewhich help for the file format list.

	options

	additional option for kpsewhich.

Examples:

>>> kpsewhich('cmr10', file_format='tfm')
'/usr/share/texmf/fonts/tfm/public/cm/cmr10.tfm'

3.1.5. Logging

	3.1.5.1. Logging

3.1.5.1. Logging

	
PyDvi.Logging.Logging.setup_logging(application_name='PyDvi', config_file='logging.yml')

	

3.1.6. OpcodeParser

This modules provides tools to parse TeX stream like DVI file and PK Font.

	
class PyDvi.OpcodeParser.OpcodeParserSet(opcode_definitions)

	Bases: list [https://docs.python.org/2/library/functions.html#list]

This class defines an opcode parser set.

The parameter opcode_definitions is a tuple of ‘opcode definition’.

An opcode definition is a tuple that corresponds to the parameters of the
OpcodeParser constructor. Except that the opcode byte can be a list that defines a
range of opcode bytes. In this case the opcode is duplicated in the opcode range. Moreover
the parameter’s definition can be a list that defines a range for a mono parameter set of
opcodes. For example [1,4] will create successively an opcode with 1 to 4-byte unsigned
parameter with an incremental opcode byte starting from the one specified.

Usage summary:

opcode_definitions : (opcode_definition, ...)

opcode_definition :
 (opcode_indexes, opcode_name, opcode_description, opcode_parameters=(), opcode_class=None) |
 (opcode_indexes, opcode_parser_class),

opcode_indexes :
 index |
 [lower_index, upper_index] # duplicate the opcode in the range

opcode_parameters :
 (p0, p1, ...) |
 ([lower_n, upper_n]) # opcode at [index + i] has parameter p[i]

	
_init_opcode_parser(opcode_definition)

	Build the set.

	
class PyDvi.OpcodeParser.OpcodeParser(opcode, name, description, parameters=(), opcode_class=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements an opcode parser.

The argument opcode defines the opcode byte.

The argument name and description defines the name and a description string, respectively.

The argument parameters is a tuple that defines the parameters of the opcode. Each item
is an integer that gives the number of bytes of the parameter. If this number is negative
then the parameter is a signed integer. For example (2, -3) defines an opcode having as
parameters a 2-byte unsigned integer followed by a 3-byte signed integer.

The optional opcode_class defines an PyDvi.DviMachine.Opcode subclass for the
opcode.

	
_init_parameter_readers(parameters)

	

	
read_parameters(opcode_parser)

	Read the opcode parameters.

	
to_opcode(args)

	Return an an PyDvi.DviMachine.Opcode subclass isntance.

3.1.7. TeXUnit

This module provides functions to convert units used in the TeX world:

	mm stands for milimetre,

	in stands for inch which corresponds to 25.4 mm,

	pt stands for TeX point, there is 72.27 pt in one inch,

	sp stands for scale point, there is 2**16 sp in one pt,

	dpi stands for dot per inch.

The DVI format uses the measure 100 nm as base unit. A scaled point is defined as a fraction:

	num = 2.54 * 1e7 = 25400000

	den = 7227 * 2**16 = 473628672

	1 sp = num/den = 5.4 nm

For a resolution of 1200 dpi, a pixel measures 21 um.

	
PyDvi.TeXUnit.dpi2mm(x)

	Convert dpi to mm

	
PyDvi.TeXUnit.in2mm(x)

	Convert in to mm

	
PyDvi.TeXUnit.in2pt(x)

	Convert in to pt

	
PyDvi.TeXUnit.in2sp(x)

	Convert in to sp

	
PyDvi.TeXUnit.mm2in(x)

	Convert mm to in

	
PyDvi.TeXUnit.pt2in(x)

	Convert in to pt

	
PyDvi.TeXUnit.pt2mm(x)

	Convert pt to mm

	
PyDvi.TeXUnit.pt2sp(x)

	Convert pt to sp

	
PyDvi.TeXUnit.sp2in(x)

	Convert sp to in

	
PyDvi.TeXUnit.sp2mm(x)

	Convert sp to mm

	
PyDvi.TeXUnit.sp2pt(x)

	Convert sp to pt

	
PyDvi.TeXUnit.sp2dpi(x)

	Convert sp to dpi

3.1.8. TexDaemon

This module provides a TeX Daemon interface.

	
class PyDvi.TexDaemon.TexDaemon(working_directory, tex_format, start_code, done_code, done_string)

	Bases: PyDvi.Tools.DaemonSubprocess.DaemonSubprocess

This class implements a TeX Daemon Subprocess.

The TeX process run in the working directory working_directory.

The argument tex_format specify the format to be used by TeX.

The argument start_code defines the code to be executed first by TeX.

The argument done_code defines to code to be appended to the input code. This code must
print on the standard output a done_string string in order to indicate the page was
successfully and completely ship-out.

	
_process(input_string, done_string)

	Process the input string.

	
fifos = ('texput.tex', 'texput.log', 'texput.dvi')

	Defines the FIFOs used by the TeX daemon to communicate.

	
make_args()

	Return the TeX calling sequence.

	
process(input_string)

	Process the input string and return a dictionary with ‘dvi’, ‘stdout’, ‘logfile’ and
‘stderr’ entries.

	
start()

	Start the TeX daemon.

3.1.9. Tools

	3.1.9.1. DaemonSubprocess

	3.1.9.2. EnumFactory

	3.1.9.3. FuncTools

	3.1.9.4. Interval

	3.1.9.5. Logging

	3.1.9.6. Path

	3.1.9.7. RevisionVersion

	3.1.9.8. Stream

	3.1.9.9. TexCommentedFile

3.1.9.1. DaemonSubprocess

This module provides functions to run Daemon process.

	
class PyDvi.Tools.DaemonSubprocess.DaemonSubprocess(working_directory)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements a Daemon sub-process.

	
fifos = ()

	List of fifos to be created.

	
kill()

	Send Kill signal to the child process.

	
make_args()

	Return the args for Popen. To be implemented in subclass.

	
restart()

	Restart the child process.

	
start()

	Start the child process.

	
stop()

	Stop the child process.

	
exception PyDvi.Tools.DaemonSubprocess.SubprocessError

	Bases: exceptions.EnvironmentError [https://docs.python.org/2/library/exceptions.html#exceptions.EnvironmentError]

	
PyDvi.Tools.DaemonSubprocess.make_nonblocking(fd)

	Makes a file descriptor non-blocking.

When a non-blocking file is read, the read does not wait for end-of-file. Instead, the read can
return just as soon as there is nothing left to read. This might be because a buffer is empty.

See Python Cookbook, Recipe 6.6.

3.1.9.2. EnumFactory

This module provides an implementation for enumerate.

The enum factory EnumFactory() builds a enumerate from a list of names and assigns to these
constants a value from 0 to N-1, where N is the number of constants:

enum1 = EnumFactory('Enum1', ('cst1', 'cst2'))

then we can get a constant’s value with:

enum1.cst1

and the number of constants using:

len(enum1)

The enum factory ExplicitEnumFactory() permits to specify the values of the constants:

enum2 = ExplicitEnumFactory('Enum2', {'cst1':1, 'cst2':3})

We can test if a value is in the enum using:

constant_value in enum2

	
PyDvi.Tools.EnumFactory.EnumFactory(cls_name, constant_names)

	Return an EnumMetaClass instance, where cls_name is the class name and
constant_names is an iterable of constant’s names.

	
PyDvi.Tools.EnumFactory.ExplicitEnumFactory(cls_name, constant_dict)

	Return an ExplicitEnumMetaClass instance, where cls_name is the class name and
constant_dict is a dict of constant’s names and their values.

3.1.9.3. FuncTools

	
PyDvi.Tools.FuncTools.repeat_call(func, count)

	Call the function func count times and return the output as a list.

	
PyDvi.Tools.FuncTools.get_filename_extension(filename)

	Return the filename extension.

3.1.9.4. Interval

	
class PyDvi.Tools.Interval.Interval(*args)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

One-dimension Interval

Initialise an interval

	Interval(inf, sup)

	else args must support the __getitem__ interface, e.g.:

	Interval((inf, sup))

	Interval([inf, sup])

	Interval(interval_instance)

	
_check_arguments(args)

	

	
static _intersection(i1, i2)

	

	
static _union(i1, i2)

	

	
copy()

	Return a clone of the interval

	
enlarge(dx)

	Enlarge the interval of dx

	
intersect(i1, i2)

	Does the interval intersect with i2?

	
is_empty()

	

	
is_included_in(i1, i2)

	Is the interval included in i1?

	
length()

	Return sup - inf

	
middle()

	Return interval middle

	
print_object()

	Print the interval

	
zero_length()

	Return sup == inf

	
class PyDvi.Tools.Interval.IntervalInt(*args)

	Bases: PyDvi.Tools.Interval.Interval

One-dimension Integer Interval

Initialise an interval

array must support the __getitem__ interface

	
length()

	Return sup - inf +1

	
class PyDvi.Tools.Interval.Interval2D(x, y)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Two-dimension Interval

Initialise a 2D interval

x and y must support the __getitem__ interface

	
area()

	Return the area

	
bounding_box()

	Return the corresponding bounding box (x.inf, y.inf, x.sup, y.sup)

	
copy()

	Return a clone of the interval

	
enlarge(dx)

	Enlarge the interval of dx

	
intersect(i2)

	Does the interval intersect with i2?

	
is_empty()

	

	
is_included_in(i2)

	Is the interval included in i2?

	
middle()

	Return interval middle

	
print_object()

	Print the interval

	
size()

	Return the horizontal and vertical size

	
class PyDvi.Tools.Interval.IntervalInt2D(x, y)

	Bases: PyDvi.Tools.Interval.Interval2D

Two-dimension Integer Interval

Initialise a 2D Integer interval

x and y must support the __getitem__ interface

3.1.9.5. Logging

	
PyDvi.Tools.Logging.format_card(text, centered=False, width=80, rule_char='#', newline=False, border=False, bottom_rule=True)

	Format the string text as a card:

*
* Title
*
* xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
* xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
* xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
* xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
*

	centered

	center the text in the card

	width

	width of the card

	rule_char

	character used to draw the rule

	newline

	insert a new line before the card

	border

	draw a left vertical rule

	bottom_rule

	draw a bottom horizontal rule

	
PyDvi.Tools.Logging.print_card(text, **kwargs)

	Print the string text formated by format_card(). The remaining keyword arguments
kwargs are passed to format_card().

	
PyDvi.Tools.Logging.remove_enclosing_new_line(text)

	Return a copy of the string text with leading and trailing newline removed.

3.1.9.6. Path

	
PyDvi.Tools.Path.find(file_name, directories)

	

	
PyDvi.Tools.Path.parent_directory_of(file_name, step=1)

	

	
PyDvi.Tools.Path.to_absolute_path(path)

	

3.1.9.7. RevisionVersion

	
class PyDvi.Tools.RevisionVersion.RevisionVersion(version)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

This class implements a revision version of the form vx.y.z where x, y and z are the major,
minor and revision number, respectively.

To compare two version, the version x.y.z is converted to an integer using the following
formulae: (x * scale + y) * scale + z. Thus x, y and z must be less than the scale.

	version

	could be a version string or a sequence of three integers.

Examples:

RevisionVersion('v0.1.2')
RevisionVersion((0,1,2))
RevisionVersion([0,1,2])

Two Instances can be compared using operator: ==, <, >, <=, >=.

An instance can be formated using str() function.

	
scale = 1000000

	default scale value

3.1.9.8. Stream

	
class PyDvi.Tools.Stream.AbstractStream

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Abstract class to read DVI, PK, TFM and VF streams.

The followings methods are abstracts:

	read()

	seek()

	tell()

and must be implemented in subclass.

In the followings methods, the position argument is used to specify a position in the stream
for the read operation. If position is not None [https://docs.python.org/2/library/constants.html#None], it seeks to the specified position
before to read the stream else it reads from the current position. See also read_bytes().

	
read(number_of_bytes)

	Read n bytes from the current position.

	
read_bcpl(position=None)

	Read a BCPL string.

The BCPL string format comes from the Basic Combined Programming Language. The length of
the string is given by the first byte, thus its length is limited to 256 characters.

	
read_big_endian_number(number_of_bytes, signed=False, position=None)

	Read a signed or an unsigned integer encoded in big endian order with number_of_bytes
bytes, cf. read_bytes().

	
read_byte_numbers(number_of_bytes, position=None)

	Read number_of_bytes times 8-bit unsigned integers, cf. read_bytes().

	
read_bytes(number_of_bytes, position=None)

	Read number_of_bytes bytes from the optional position or the current position. If
position, it seeks to the specified position and thus change the current position in the
stream.

	
read_fix_word(position=None)

	Read a fix word.

	
read_four_byte_numbers(position=None)

	Read four 8-bit unsigned integers, cf. read_bytes().

	
read_signed_byte1(position=None)

	Read a 1-byte signed integer, cf. read_big_endian_number().

	
read_signed_byte2(position=None)

	Read a 2-byte signed integer, cf. read_big_endian_number().

	
read_signed_byte3(position=None)

	Read a 3-byte signed integer, cf. read_big_endian_number().

	
read_signed_byte4(position=None)

	Read a 4-byte signed integer, cf. read_big_endian_number().

	
read_signed_byten = (<function read_signed_byte1>, <function read_signed_byte2>, <function read_signed_byte3>, <function read_signed_byte4>)

	This tuple permits to get the read_signed_byte method with the number of bytes as index.

	
read_three_byte_numbers(position=None)

	Read three 8-bit unsigned integers, cf. read_bytes().

	
read_unsigned_byte1(position=None)

	Read a 1-byte unsigned integer, cf. read_big_endian_number().

	
read_unsigned_byte2(position=None)

	Read a 2-byte unsigned integer, cf. read_big_endian_number().

	
read_unsigned_byte3(position=None)

	Read a 3-byte unsigned integer, cf. read_big_endian_number().

	
read_unsigned_byte4(position=None)

	Read a 4-byte unsigned integer, cf. read_big_endian_number().

	
read_unsigned_byten = (<function read_unsigned_byte1>, <function read_unsigned_byte2>, <function read_unsigned_byte3>, <function read_unsigned_byte4>)

	This tuple permits to get the read_unsigned_byte method with the number of bytes as index.

	
seek(postion, whence)

	Seek to position.

	
tell()

	Tell the current position.

	
class PyDvi.Tools.Stream.StandardStream

	Bases: PyDvi.Tools.Stream.AbstractStream

Abstract stream class.

The attribute stream must be defined in subclass.

	
read(number_of_bytes)

	Read n bytes from the current position and return a bytearray [https://docs.python.org/2/library/functions.html#bytearray]

	
seek(postion, whence=0)

	Seek to position.

	
tell()

	Tell the current position.

	
class PyDvi.Tools.Stream.FileStream(filename)

	Bases: PyDvi.Tools.Stream.StandardStream

	
class PyDvi.Tools.Stream.ByteStream(string_bytes)

	Bases: PyDvi.Tools.Stream.StandardStream

	
end_of_stream()

	

	
PyDvi.Tools.Stream.to_fix_word(x)

	Convert x to a fix word.

A fix word is a 32-bit representation of a binary fraction. A fix word is a signed quantity,
with the two’s complement of the entire word used to represent negation. Of the 32 bits in a
fix word, exactly 12 are to the left of the binary point; thus, the largest fix word value is
2048 - 2**-20, and the smallest is -2048.

fix word = x / 2**20

3.1.9.9. TexCommentedFile

	
class PyDvi.Tools.TexCommentedFile.TexCommentedFile(filename)

	Bases: file

This class permits to iterate over lines of a text file and to skip commented line by ‘%’.

	
concatenate_lines()

	Concatenate the lines and return the corresponding string.

3.1.10. Version

	
PyDvi.Version.pydvi = <PyDvi.Tools.RevisionVersion.RevisionVersion object>

	defines the PyDvi revision version.

3.2. PyDviPng

	3.2.1. Config
	3.2.1.1. ConfigInstall

	3.2.2. DviMachine

	3.2.3. Logging
	3.2.3.1. Logging

3.2.1. Config

	3.2.1.1. ConfigInstall

3.2.1.1. ConfigInstall

3.2.2. DviMachine

3.2.3. Logging

	3.2.3.1. Logging

3.2.3.1. Logging

3.3. PyDviGui

	3.3.1. Config
	3.3.1.1. Config

	3.3.1.2. ConfigInstall

	3.3.1.3. Messages

	3.3.2. DviGlViewer
	3.3.2.1. ApplicationStatusBar

	3.3.2.2. DviMachine

	3.3.2.3. GlWidgetV4

	3.3.2.4. MainWindow

	3.3.2.5. PrimitiveVertexArray

	3.3.2.6. ShaderProgramesV4

	3.3.2.7. TextVertexArray

	3.3.2.8. TextureFont

	3.3.3. DviViewer
	3.3.3.1. MainWindow

	3.3.4. FontViewer
	3.3.4.1. FontInfoTableModel

	3.3.4.2. Glyph

	3.3.4.3. GlyphGraphicsView

	3.3.4.4. GlyphInfoTableModel

	3.3.4.5. InfoTableModel

	3.3.4.6. MainWindow

	3.3.5. Logging
	3.3.5.1. Logging

	3.3.6. Tools
	3.3.6.1. Math

	3.3.6.2. Path

	3.3.6.3. Platform

	3.3.6.4. Singleton

	3.3.7. Widgets
	3.3.7.1. ApplicationBase

	3.3.7.2. IconLoader

	3.3.7.3. MainWindowBase

	3.3.8. ui
	3.3.8.1. dvi_viewer_ui

	3.3.8.2. font_viewer_ui

	3.3.8.3. pydvi_rc

3.3.1. Config

	3.3.1.1. Config

	3.3.1.2. ConfigInstall

	3.3.1.3. Messages

3.3.1.1. Config

3.3.1.2. ConfigInstall

3.3.1.3. Messages

3.3.2. DviGlViewer

	3.3.2.1. ApplicationStatusBar

	3.3.2.2. DviMachine

	3.3.2.3. GlWidgetV4

	3.3.2.4. MainWindow

	3.3.2.5. PrimitiveVertexArray

	3.3.2.6. ShaderProgramesV4

	3.3.2.7. TextVertexArray

	3.3.2.8. TextureFont

3.3.2.1. ApplicationStatusBar

3.3.2.2. DviMachine

3.3.2.3. GlWidgetV4

3.3.2.4. MainWindow

3.3.2.5. PrimitiveVertexArray

3.3.2.6. ShaderProgramesV4

3.3.2.7. TextVertexArray

3.3.2.8. TextureFont

3.3.3. DviViewer

	3.3.3.1. MainWindow

3.3.3.1. MainWindow

3.3.4. FontViewer

	3.3.4.1. FontInfoTableModel

	3.3.4.2. Glyph

	3.3.4.3. GlyphGraphicsView

	3.3.4.4. GlyphInfoTableModel

	3.3.4.5. InfoTableModel

	3.3.4.6. MainWindow

3.3.4.1. FontInfoTableModel

3.3.4.2. Glyph

3.3.4.3. GlyphGraphicsView

3.3.4.4. GlyphInfoTableModel

3.3.4.5. InfoTableModel

3.3.4.6. MainWindow

3.3.5. Logging

	3.3.5.1. Logging

3.3.5.1. Logging

3.3.6. Tools

	3.3.6.1. Math

	3.3.6.2. Path

	3.3.6.3. Platform

	3.3.6.4. Singleton

3.3.6.1. Math

3.3.6.2. Path

3.3.6.3. Platform

3.3.6.4. Singleton

3.3.7. Widgets

	3.3.7.1. ApplicationBase

	3.3.7.2. IconLoader

	3.3.7.3. MainWindowBase

3.3.7.1. ApplicationBase

3.3.7.2. IconLoader

3.3.7.3. MainWindowBase

3.3.8. ui

	3.3.8.1. dvi_viewer_ui

	3.3.8.2. font_viewer_ui

	3.3.8.3. pydvi_rc

3.3.8.1. dvi_viewer_ui

3.3.8.2. font_viewer_ui

3.3.8.3. pydvi_rc

4. Bibliography

This software was designed according to the official TeX Web2C documentation
(http://www.tug.org/web2c/).

Relevant files are:

	dvicopy.web

	dvitype.web

	pktype.web

	pltotf.web

	tftopl.web

	vftovp.web

A copy of this documentation is available here and later in the API documentation:

	4.1. Device-Independent File Format

	4.2. Packet Font File Format

	4.3. Virtual Font File Format

Other relevant information could be found here:

	4.4. Relevant Softwares
	4.4.1. TeX Engine

	4.4.2. Scientific Plotting

	4.4.3. DVI to Image Converter

	4.4.4. DVI Viewer

	4.4.5. DVI Tools

	4.4.6. TeX Fonts

	4.4.7. Font Viewer

4.1. Device-Independent File Format

The Device-independent file format is described in the dvitype.web file from Web2C. Part of
this documentation comes from this file.

The DVI format was designed by David R. Fuchs in 1979.

A DVI file is a stream of 8-bit bytes, which may be regarded as a series of commands in a
machine-like language. The first byte of each command is the operation code, and this code is
followed by zero or more bytes that provide parameters to the command. The parameters themselves
may consist of several consecutive bytes; for example, the set_rule command has two parameters,
each of which is four bytes long. Parameters are usually regarded as non negative integers; but
four-byte-long parameters, and shorter parameters that denote distances, can be either positive or
negative. Such parameters are given in two’s complement notation. For example, a two-byte-long
distance parameter has a value between -2**15 and 2**15 -1.

A DVI file consists of a “preamble”, followed by a sequence of one or more “pages”, followed by a
“postamble”. The preamble is simply a pre command, with its parameters that define the
dimensions used in the file; this must come first. Each “page” consists of a bop command,
followed by any number of other commands that tell where characters are to be placed on a physical
page, followed by an eop command. The pages appear in the order that they were generated, not
in any particular numerical order. If we ignore nop commands and fnt_def commands (which
are allowed between any two commands in the file), each eop command is immediately followed by a
bop command, or by a post command; in the latter case, there are no more pages in the file, and
the remaining bytes form the postamble. Further details about the postamble will be explained
later.

Some parameters in DVI commands are “pointers”. These are four-byte quantities that give the
location number of some other byte in the file; the first byte is number 0, then comes number 1, and
so on. For example, one of the parameters of a bop command points to the previous bop; this
makes it feasible to read the pages in backwards order, in case the results are being directed to a
device that stacks its output face up. Suppose the preamble of a DVI file occupies bytes 0 to 99.
Now if the first page occupies bytes 100 to 999, say, and if the second page occupies bytes 1000 to
1999, then the bop that starts in byte 1000 points to 100 and the bop that starts in byte
2000 points to 1000. (The very first bop, i.e. the one that starts in byte 100, has a pointer
of -1.)

The DVI format is intended to be both compact and easily interpreted by a machine. Compactness is
achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is
an integer; this value is changed only by fnt and fnt_num commands. (b) The current
position on the page is given by two numbers called the horizontal and vertical coordinates, h
and v. Both coordinates are zero at the upper left corner of the page; moving to the right
corresponds to increasing the horizontal coordinate, and moving down corresponds to increasing the
vertical coordinate. Thus, the coordinates are essentially Cartesian, except that vertical
directions are flipped; the Cartesian version of (h, v) would be (h, -v). (c) The current
spacing amounts are given by four numbers w, x, y, and z, where w and x are
used for horizontal spacing and where y and z are used for vertical spacing. (d) There is a
stack containing (h, v, w, x, y, z) values; the DVI commands push and pop are used to
change the current level of operation. Note that the current font f is not pushed and popped;
the stack contains only information about positioning.

The values of h, v, w, x, y, and z are signed integers having up to 32 bits,
including the sign. Since they represent physical distances, there is a small unit of measurement
such that increasing h by 1 means moving a certain tiny distance to the right. The actual unit
of measurement is variable, as explained below.

Here is a list of all the commands that may appear in a DVI file. Each command is specified by its
symbolic name (e.g. bop), its opcode byte (e.g. 139), and its parameters (if any). The
parameters are followed by a bracketed number telling how many bytes they occupy; for example,
p[4] means that parameter p is four bytes long.

set_char_0 0. Typeset character number 0 from font f such that the reference point of the
character is at (h, v). Then increase h by the width of that character. Note that a
character may have zero or negative width, so one cannot be sure that h will advance after this
command; but h usually does increase.

set_char 1 through set char 127 (opcodes 1 to 127). Do the operations of set_char_0; but
use the character whose number matches the opcode, instead of character 0.

set1 128 c[1]. Same as set_char_0, except that character number c is typeset. TEX82
uses this command for characters in the range 128 <= c < 256.

set2 129 c[2]. Same as set1 , except that c is two bytes long, so it is in the range
0 <= c < 65536. TEX82 never uses this command, which is intended for processors that deal with
oriental languages; but DVItype will allow character codes greater than 255, assuming that they all
have the same width as the character whose code is c mod 256.

set3 130 c[3]. Same as set1, except that c is three bytes long, so it can be as large
as 2**24 -1.

set4 131 c[4]. Same as set1, except that c is four bytes long, possibly even negative.
Imagine that.

set_rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with
its bottom left corner at (h, v). Then set h = h + b. If either a <= 0 or b <= 0,
nothing should be typeset. Note that if b < 0, the value of h will decrease even though
nothing else happens. Programs that typeset from DVI files should be careful to make the rules line
up carefully with digitised characters, as explained in connection with the rule pixels subroutine
below.

put1 133 c[1]. Typeset character number c from font f such that the reference point of
the character is at (h, v). (The put commands are exactly like the set commands, except
that they simply put out a character or a rule without moving the reference point afterwards.)

put2 134 c[2]. Same as set2, except that h is not changed.

put3 135 c[3]. Same as set3, except that h is not changed.

put4 136 c[4]. Same as set4, except that h is not changed.

put_rule 137 a[4] b[4]. Same as set_rule, except that h is not changed.

nop 138. No operation, do nothing. Any number of nop‘s may occur between DVI commands, but
a nop cannot be inserted between a command and its parameters or between two parameters.

bop 139 c0[4] c1[4] ... c9[4] p[4]. Beginning of a page: Set (h, v, w, x, y, z) = (0, 0, 0,
0, 0, 0) and set the stack empty. Set the current font f to an undefined value. The ten
ci parameters can be used to identify pages, if a user wants to print only part of a DVI file;
TEX82 gives them the values of count0 ... count9 at the time shipout was invoked for this
page. The parameter p points to the previous bop command in the file, where the first
bop has p = -1.

eop 140. End of page: Print what you have read since the previous bop. At this point the
stack should be empty. (The DVI-reading programs that drive most output devices will have kept a
buffer of the material that appears on the page that has just ended. This material is largely, but
not entirely, in order by v coordinate and (for fixed v) by h coordinate; so it usually
needs to be sorted into some order that is appropriate for the device in question. DVItype does not
do such sorting.)

push 141. Push the current values of (h, v, w, x, y, z) onto the top of the stack; do not
change any of these values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign them to (h, v, w, x, y, z).
The number of pops should never exceed the number of pushes, since it would be highly embarrassing
if the stack were empty at the time of a pop command.

right1 143 b[1]. Set h = h + b, i.e. move right b units. The parameter is a signed
number in two’s complement notation, -128 <= b < 128; if b < 0, the reference point actually
moves left.

right2 144 b[2]. Same as right1, except that b is a two-byte quantity in the range
-32768 <= b < 32768.

right3 145 b[3]. Same as right1, except that b is a three-byte quantity in the range
-2**23 <= b < 2**23.

right4 146 b[4]. Same as right1, except that b is a four-byte quantity in the range
-2**31 <= b < 2**31.

w0 147. Set h = h + w; i.e. move right w units. With luck, this parameter-less command will
usually suffice, because the same kind of motion will occur several times in succession; the
following commands explain how w gets particular values.

w1 148 b[1]. Set w = b and h = h + b. The value of b is a signed quantity in two’s
complement notation, -128 <= b < 128. This command changes the current w spacing and moves
right by b.

w2 149 b[2]. Same as w1, but b is a two-byte-long parameter, -32768 <= b < 32768.

w3 150 b[3]. Same as w1, but b is a three-byte-long parameter, -2**23 <= b < 2**23.

w4 151 b[4]. Same as w1, but b is a four-byte-long parameter, -2**31 <= b < 2**31.

x0 152. Set h = h + x; i.e. move right x units. The x commands are like the w
commands except that they involve x instead of w.

x1 153 b[1]. Set x = b and h = h + b. The value of b is a signed quantity in two’s
complement notation, -128 <= b < 128. This command changes the current x spacing and moves
right by b.

x2 154 b[2]. Same as x1, but b is a two-byte-long parameter, -32768 <= b < 32768.

x3 155 b[3]. Same as x1, but b is a three-byte-long parameter, -2**23 <= b < 2**23.

x4 156 b[4]. Same as x1, but b is a four-byte-long parameter, -2**31 <= b < 2**31.

down1 157 a[1]. Set v = v + a, i.e. move down a units. The parameter is a signed
number in two’s complement notation, -128 <= a < 128; if a < 0, the reference point actually
moves up.

down2 158 a[2]. Same as down1, except that a is a two-byte quantity in the range
-32768 <= a < 32768.

down3 159 a[3]. Same as down1, except that a is a three-byte quantity in the range
-2**23 <= a < 2**23.

down4 160 a[4]. Same as down1, except that a is a four-byte quantity in the range
-2**31 <= a < 2**31.

y0 161. Set v = v + y; i.e. move down y units. With luck, this parameter-less command
will usually suffice, because the same kind of motion will occur several times in succession; the
following commands explain how y gets particular values.

y1 162 a[1]. Set y = a and v = v + a. The value of a is a signed quantity in two’s
complement notation, -128 <= a < 128. This command changes the current y spacing and moves
down by a.

y2 163 a[2]. Same as y1, but a is a two-byte-long parameter, -32768 <= a < 32768.

y3 164 a[3]. Same as y1, but a is a three-byte-long parameter, -2**23 <= a < 2**23.

y4 165 a[4]. Same as y1, but a is a four-byte-long parameter, -2**31 <= a < 2**31.

z0 166. Set v = v + z; i.e. move down z units. The z commands are like the y
commands except that they involve z instead of y.

z1 167 a[1]. Set z = a and v = v + a. The value of a is a signed quantity in two’s
complement notation, -128 <= a < 128. This command changes the current z spacing and moves
down by a.

z2 168 a[2]. Same as z1, but a is a two-byte-long parameter, -32768 <= a < 32768.

z3 169 a[3]. Same as z1, but a is a three-byte-long parameter, -2**23 <= a < 2**23.

z4 170 a[4]. Same as z1, but a is a four-byte-long parameter, -2**31 <= a < 2**31.

fnt_num_0 171. Set f = 0. Font 0 must previously have been defined by a fnt_def
instruction, as explained below.

fnt_num_1 through fnt_num_63 (opcodes 172 to 234). Set f = 1, ... , f = 63,
respectively.

fnt1 235 k[1]. Set f = k. TEX82 uses this command for font numbers in the range 64 <= k <
256.

fnt2 236 k[2]. Same as fnt1, except that k is two bytes long, so it is in the range 0
<= k < 65536. TEX82 never generates this command, but large font numbers may prove useful for
specifications of colour or texture, or they may be used for special fonts that have fixed numbers in
some external coding scheme.

fnt3 237 k[3]. Same as fnt1, except that k is three bytes long, so it can be as large
as 2**24 - 1.

fnt4 238 k[4]. Same as fnt1, except that k is four bytes long; this is for the really
big font numbers (and for the negative ones).

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k+2)-byte
nop unless special DVI-reading programs are being used. TEX82 generates xxx1 when a short
enough special appears, setting k to the number of bytes being sent. It is recommended that
x be a string having the form of a keyword followed by possible parameters relevant to that
keyword.

xxx2 240 k[2] x[k]. Like xxx1, but 0 <= k < 65536.

xxx3 241 k[3] x[k]. Like xxx1, but 0 <= k < 224.

xxx4 242 k[4] x[k]. Like xxx1, but k can be ridiculously large. TEX82 uses xxx4
when xxx1 would be incorrect.

fnt_def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 <= k < 256;
font definitions will be explained shortly.

fnt_def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 <= k < 65536.

fnt_def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 <= k < 224.

fnt_def4 246 k[4] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where -2**31 <= k <
2**31.

pre 247 i[1] num[4] den [4] mag[4] k[1] x[k]. Beginning of the preamble; this must come at the
very beginning of the file. Parameters i, num, den, mag, k, and x are
explained below.

post 248. Beginning of the postamble, see below.

post_post 249. Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.

The preamble contains basic information about the file as a whole. As stated above, there are six
parameters: i[1] num[4] den [4] mag[4] k[1] x[k].

The i byte identifies DVI format; currently this byte is always set to 2. (The value i = 3
is currently used for an extended format that allows a mixture of right-to-left and left-to-right
typesetting.

The next two parameters, num and den, are positive integers that define the units of
measurement; they are the numerator and denominator of a fraction by which all dimensions in the DVI
file could be multiplied in order to get lengths in units of 1e-7 meters. (For example, there are
exactly 7227 TEX points in 254 centimetres, and TEX82 works with scaled points where there are 216
sp in a point, so TEX82 sets num = 25400000 and den = 7227 * 2**16 = 473628672.)

The mag parameter is what TEX82 calls mag, i.e. 1000 times the desired magnification. The
actual fraction by which dimensions are multiplied is therefore mn/1000d. Note that if a TEX
source document does not call for any true dimensions, and if you change it only by specifying a
different mag setting, the DVI file that TEX creates will be completely unchanged except for the
value of mag in the preamble and postamble. (Fancy DVI-reading programs allow users to override
the mag setting when a DVI file is being printed.)

Finally, k and x allow the DVI writer to include a comment, which is not interpreted
further. The length of comment x is k, where 0 <= k < 256.

Font definitions for a given font number k contain further parameters c[4] s[4] d[4] a[1] l[1]
n[a + l].

The four-byte value c is the check sum that TEX (or whatever program generated the DVI file)
found in the TFM file for this font; c should match the check sum of the font found by programs
that read this DVI file.

Parameter s contains a fixed-point scale factor that is applied to the character widths in font
k; font dimensions in TFM files and other font files are relative to this quantity, which is
always positive and less than 2**27. It is given in the same units as the other dimensions of the
DVI file. Parameter d is similar to s; it is the “design size”, and (like s) it is
given in DVI units. Thus, font k is to be used at mag * s/1000d times its normal size.

The remaining part of a font definition gives the external name of the font, which is an ASCII
string of length a + l. The number a is the length of the “area” or directory, and l is
the length of the font name itself; the standard local system font area is supposed to be used when
a = 0. The n field contains the area in its first a bytes.

Font definitions must appear before the first use of a particular font number. Once font k is
defined, it must not be defined again; however, we shall see below that font definitions appear in
the postamble as well as in the pages, so in this sense each font number is defined exactly twice,
if at all. Like nop commands, font definitions can appear before the first bop, or between
an eop and a bop.

The last page in a DVI file is followed by post; this command introduces the postamble, which
summarises important facts that TEX has accumulated about the file, making it possible to print
subsets of the data with reasonable efficiency. The postamble has the form:

post p[4] num[4] den [4] mag[4] l[4] u[4] s[2] t[2]
font definitions
post_post q[4] i[1] 223's[>=4]

Here p is a pointer to the final bop in the file. The next three parameters, num,
den, and mag, are duplicates of the quantities that appeared in the preamble.

Parameters l and u give respectively the height-plus-depth of the tallest page and the width
of the widest page, in the same units as other dimensions of the file. These numbers might be used
by a DVI-reading program to position individual “pages” on large sheets of film or paper; however,
the standard convention for output on normal size paper is to position each page so that the upper
left-hand corner is exactly one inch from the left and the top. Experience has shown that it is
unwise to design DVI-to-printer software that attempts cleverly to centre the output; a fixed
position of the upper left corner is easiest for users to understand and to work with. Therefore
l and u are often ignored.

Parameter s is the maximum stack depth (i.e. the largest excess of push commands over
pop commands) needed to process this file. Then comes t, the total number of pages (bop
commands) present.

The postamble continues with font definitions, which are any number of fnt_def commands as
described above, possibly interspersed with nop commands. Each font number that is used in the
DVI file must be defined exactly twice: Once before it is first selected by a fnt command, and
once in the postamble.

The last part of the postamble, following the post_post byte that signifies the end of the font
definitions, contains q, a pointer to the post command that started the postamble. An
identification byte i, comes next; this currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223. TEX
puts out four to seven of these trailing bytes, until the total length of the file length is a
multiple of four bytes, since this works out best on machines that pack four bytes per word; but any
number of 223’s is allowed, as long as there are at least four of them. In effect, 223 is a sort of
signature that is added at the very end.

This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the
postamble first, on most computers, even though TEX wants to write the postamble last. Most
operating systems permit random access to individual words or bytes of a file, so the DVI reader can
start at the end and skip backwards over the 223’s until finding the identification byte. Then it
can back up four bytes, read q, and move to byte q of the file. This byte should, of
course, contain the value 248 (post); now the postamble can be read, so the DVI reader discovers
all the information needed for typesetting the pages. Note that it is also possible to skip through
the DVI file at reasonably high speed to locate a particular page, if that proves desirable. This
saves a lot of time, since DVI files used in production jobs tend to be large.

4.2. Packet Font File Format

The Packet Font file format is described in the pktype.web file from Web2C. Part of this
documentation comes from this file.

The packed file format is a compact representation of the data contained in a GF file. The
information content is the same, but packed (PK) files are almost always less than half the size of
their GF counterparts. They are also easier to convert into a raster representation because they do
not have a profusion of paint, skip, and new_row commands to be separately interpreted.
In addition, the PK format expressly forbids special commands within a character. The minimum
bounding box for each character is explicit in the format, and does not need to be scanned for as in
the GF format. Finally, the width and escapement values are combined with the raster information
into character “packets”, making it simpler in many cases to process a character.

A PK file is organised as a stream of 8-bit bytes. At times, these bytes might be split into 4-bit
nybbles or single bits, or combined into multiple byte parameters. When bytes are split into
smaller pieces, the “first” piece is always the most significant of the byte. For instance, the
first bit of a byte is the bit with value 128; the first nybble can be found by dividing a byte by
16. Similarly, when bytes are combined into multiple byte parameters, the first byte is the most
significant of the parameter. If the parameter is signed, it is represented by two’s-complement
notation.

The set of possible eight-bit values is separated into two sets, those that introduce a character
definition, and those that do not. The values that introduce a character definition range from 0 to
239; byte values above 239 are interpreted as commands. Bytes that introduce character definitions
are called flag bytes, and various fields within the byte indicate various things about how the
character definition is encoded. Command bytes have zero or more parameters, and can never appear
within a character definition or between parameters of another command, where they would be
interpreted as data.

A PK file consists of a preamble, followed by a sequence of one or more character definitions,
followed by a postamble. The preamble command must be the first byte in the file, followed
immediately by its parameters. Any number of character definitions may follow, and any command but
the preamble command and the postamble command may occur between character definitions. The very
last command in the file must be the postamble.

The packed file format is intended to be easy to read and interpret by device drivers. The small
size of the file reduces the input/output overhead each time a font is loaded. For those drivers
that load and save each font file into memory, the small size also helps reduce the memory
requirements. The length of each character packet is specified, allowing the character raster data
to be loaded into memory by simply counting bytes, rather than interpreting each command; then, each
character can be interpreted on a demand basis. This also makes it possible for a driver to skip a
particular character quickly if it knows that the character is unused.

First, the command bytes will be presented; then the format of the character definitions will be
defined. Eight of the possible sixteen commands (values 240 through 255) are currently defined; the
others are reserved for future extensions. The commands are listed below. Each command is
specified by its symbolic name (e.g., pk_no_op), its opcode byte, and any parameters. The
parameters are followed by a bracketed number telling how many bytes they occupy, with the number
preceded by a plus sign if it is a signed quantity. (Four byte quantities are always signed,
however.)

pk_xxx1 240 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte
no_op unless special PK-reading programs are being used. METAFONT generates xxx commands when
encountering a special string. It is recommended that x be a string having the form of a
keyword followed by possible parameters relevant to that keyword.

pk_xxx2 241 k[2] x[k]. Like pk_xxx1, but 0 <= k < 65536.

pk_xxx3 242 k[3] x[k]. Like pk_xxx1, but 0 <= k < 224. METAFONT uses this when sending
a special string whose length exceeds 255.

pk_xxx4 243 k[4] x[k]. Like pk_xxx1, but k can be ridiculously large; k mustn’t be
negative.

pk yyy 244 y[4]. This command is undefined in general; it functions as a five-byte no_op
unless special PK reading programs are being used. METAFONT puts scaled numbers into yyy‘s, as
a result of numspecial commands; the intent is to provide numeric parameters to xxx commands
that immediately precede.

pk post 245. Beginning of the postamble. This command is followed by enough pk_no_op
commands to make the file a multiple of four bytes long. Zero through three bytes are usual, but
any number is allowed. This should make the file easy to read on machines that pack four bytes to a
word.

pk_no_op 246. No operation, do nothing. Any number of pk_no_op‘s may appear between PK
commands, but a pk_no_op cannot be inserted between a command and its parameters, between two
parameters, or inside a character definition.

pk_pre 247 i[1] k[1] x[k] ds [4] cs [4] hppp[4] vppp[4]. Preamble command. Here, i is the
identification byte of the file, currently equal to 89. The string x is merely a comment,
usually indicating the source of the PK file. The parameters ds and cs are the design size
of the file in 1/2**20 points, and the checksum of the file, respectively. The checksum should
match the TFM file and the GF files for this font. Parameters hppp and vppp are the ratios
of pixels per point, horizontally and vertically, multiplied by 2**16; they can be used to correlate
the font with specific device resolutions, magnifications, and “at sizes”. Usually, the name of the
PK file is formed by concatenating the font name (e.g., cmr10) with the resolution at which the font
is prepared in pixels per inch multiplied by the magnification factor, and the letters pk. For
instance, cmr10 at 300 dots per inch should be named cmr10.300pk; at one thousand dots per inch
and magstephalf, it should be named cmr10.1095pk.

The PK format has two conflicting goals: to pack character raster and size information as compactly
as possible, while retaining ease of translation into raster and other forms. A suitable compromise
was found in the use of run-encoding of the raster information. Instead of packing the individual
bits of the character, we instead count the number of consecutive “black” or “white” pixels in a
horizontal raster row, and then encode this number. Run counts are found for each row from left to
right, traversing rows from the top to bottom. This is essentially the way the GF format works.
Instead of presenting each row individually, however, we concatenate all of the horizontal raster
rows into one long string of pixels, and encode this row. With knowledge of the width of the
bit-map, the original character glyph can easily be reconstructed. In addition, we do not need
special commands to mark the end of one row and the beginning of the next.

Next, we place the burden of finding the minimum bounding box on the part of the font generator,
since the characters will usually be used much more often than they are generated. The minimum
bounding box is the smallest rectangle that encloses all “black” pixels of a character. We also
eliminate the need for a special end of character marker, by supplying exactly as many bits as are
required to fill the minimum bounding box, from which the end of the character is implicit.

Let us next consider the distribution of the run counts. Analysis of several dozen pixel files at
300 dots per inch yields a distribution peaking at four, falling off slowly until ten, then a bit
more steeply until twenty, and then asymptotically approaching the horizontal. Thus, the great
majority of our run counts will fit in a four-bit nybble. The eight-bit byte is attractive for our
run-counts, as it is the standard on many systems; however, the wasted four bits in the majority of
cases seem a high price to pay. Another possibility is to use a Huffman-type encoding scheme with a
variable number of bits for each run-count; this was rejected because of the overhead in fetching
and examining individual bits in the file. Thus, the character raster definitions in the PK file
format are based on the four-bit nybble.

An analysis of typical pixel files yielded another interesting statistic: Fully 37% of the raster
rows were duplicates of the previous row. Thus, the PK format allows the specification of repeat
counts, which indicate how many times a horizontal raster row is to be repeated. These repeated
rows are taken out of the character glyph before individual rows are concatenated into the long
string of pixels.

For elegance, we disallow a run count of zero. The case of a null raster description should be
gleaned from the character width and height being equal to zero, and no raster data should be read.
No other zero counts are ever necessary. Also, in the absence of repeat counts, the repeat value is
set to be zero (only the original row is sent.) If a repeat count is seen, it takes effect on the
current row. The current row is defined as the row on which the first pixel of the next run count
will lie. The repeat count is set back to zero when the last pixel in the current row is seen, and
the row is sent out.

This poses a problem for entirely black and entirely white rows, however. Let us say that the
current row ends with four white pixels, and then we have five entirely empty rows, followed by a
black pixel at the beginning of the next row, and the character width is ten pixels. We would like
to use a repeat count, but there is no legal place to put it. If we put it before the white run
count, it will apply to the current row. If we put it after, it applies to the row with the black
pixel at the beginning. Thus, entirely white or entirely black repeated rows are always packed as
large run counts (in this case, a white run count of 54) rather than repeat counts.

Now we turn our attention to the actual packing of the run counts and repeat counts into nybbles.
There are only sixteen possible nybble values. We need to indicate run counts and repeat counts.
Since the run counts are much more common, we will devote the majority of the nybble values to them.
We therefore indicate a repeat count by a nybble of 14 followed by a packed number, where a packed
number will be explained later. Since the repeat count value of one is so common, we indicate a
repeat one command by a single nybble of 15. A 14 followed by the packed number 1 is still legal
for a repeat one count. The run counts are coded directly as packed numbers.

For packed numbers, therefore, we have the nybble values 0 through 13. We need to represent the
positive integers up to, say, 2**31 - 1. We would like the more common smaller numbers to take only
one or two nybbles, and the infrequent large numbers to take three or more. We could therefore
allocate one nybble value to indicate a large run count taking three or more nybbles. We do this
with the value 0.

We are left with the values 1 through 13. We can allocate some of these, say dyn_f, to be
one-nybble run counts. These will work for the run counts 1 .. dyn_f. For subsequent run
counts, we will use a nybble greater than dyn_f, followed by a second nybble, whose value can
run from 0 through 15. Thus, the two-nybble values will run from dyn_f +1 .. (13 - dyn_f) * 16 +
dyn_f. We have our definition of large run count values now, being all counts greater than (13
- dyn_f) * 16 + dyn_f.

We can analyse our several dozen pixel files and determine an optimal value of dyn_f, and use
this value for all of the characters. Unfortunately, values of dyn_f that pack small characters
well tend to pack the large characters poorly, and values that pack large characters well are not
efficient for the smaller characters. Thus, we choose the optimal dyn_f on a character basis,
picking the value that will pack each individual character in the smallest number of nybbles. Legal
values of dyn_f run from 0 (with no one-nybble run counts) to 13 (with no two-nybble run
counts).

Our only remaining task in the coding of packed numbers is the large run counts. We use a scheme
suggested by D. E. Knuth that simply and elegantly represents arbitrarily large values. The general
scheme to represent an integer i is to write its hexadecimal representation, with leading zeros
removed. Then we count the number of digits, and prepend one less than that many zeros before the
hexadecimal representation. Thus, the values from one to fifteen occupy one nybble; the values
sixteen through 255 occupy three, the values 256 through 4095 require five, etc.

For our purposes, however, we have already represented the numbers one through (13 - dyn_f) * 16
+ dyn_f ``. In addition, the one-nybble values have already been taken by our other commands, which
means that only the values from sixteen up are available to us for long run counts. Thus, we simply
normalise our long run counts, by subtracting ``(13 - dyn_f) * 16 + dyn_f +1 and adding 16, and
then we represent the result according to the scheme above.

The final algorithm for decoding the run counts based on the above scheme looks like this, assuming
that a procedure called get_nyb is available to get the next nybble from the file, and assuming that
the global repeat count indicates whether a row needs to be repeated. Note that this routine is
recursive, but since a repeat count can never directly follow another repeat count, it can only be
recursive to one level:

function pk packed num: integer ;
 var i; j: integer;
 begin i <- get nyb;
 if i = 0 then
 begin repeat j <- get_nyb; incr(i);
 until j != 0;
 while i > 0 do
 begin j <- j * 16 + get_nyb; decr(i);
 end;
 pk_packed_num <- j - 15 + (13 - dyn_f) * 16 + dyn_f;
 end
 else if i <= dyn_f then pk_packed_num <- i
 else if i < 14 then pk_packed_num <- (i - dyn_f - 1) * 16 + get_nyb + dyn_f + 1
 else begin if repeat count != 0 then abort('Second repeat count for this row!');
 repeat_count <- 1; { prevent recursion more than one level }
 if i = 14 then repeat_count <- pk_packed_num;
 send_out(true, repeat count); pk_packed_num <- pk_packed_num;
 end;
 end;

For low resolution fonts, or characters with “gray” areas, run encoding can often make the character
many times larger. Therefore, for those characters that cannot be encoded efficiently with run
counts, the PK format allows bit-mapping of the characters. This is indicated by a dyn_f value
of 14. The bits are packed tightly, by concatenating all of the horizontal raster rows into one
long string, and then packing this string eight bits to a byte. The number of bytes required can be
calculated by (width * height + 7) div 8. This format should only be used when packing the
character by run counts takes more bytes than this, although, of course, it is legal for any
character. Any extra bits in the last byte should be set to zero.

At this point, we are ready to introduce the format for a character descriptor. It consists of
three parts: a flag byte, a character preamble, and the raster data. The most significant four bits
of the flag byte yield the dyn_f value for that character. (Notice that only values of 0
through 14 are legal for dyn_f, with 14 indicating a bit mapped character; thus, the flag bytes
do not conflict with the command bytes, whose upper nybble is always 15.) The next bit (with weight
8) indicates whether the first run count is a black count or a white count, with a one indicating a
black count. For bit-mapped characters, this bit should be set to a zero. The next bit (with
weight 4) indicates whether certain later parameters (referred to as size parameters) are given in
one-byte or two-byte quantities, with a one indicating that they are in two-byte quantities. The
last two bits are concatenated on to the beginning of the packet-length parameter in the character
preamble, which will be explained below.

However, if the last three bits of the flag byte are all set (normally indicating that the size
parameters are two-byte values and that a 3 should be prepended to the length parameter), then a
long format of the character preamble should be used instead of one of the short forms.

Therefore, there are three formats for the character preamble; the one that is used depends on the
least significant three bits of the flag byte. If the least significant three bits are in the range
zero through three, the short format is used. If they are in the range four through six, the
extended short format is used. Otherwise, if the least significant bits are all set, then the long
form of the character preamble is used. The preamble formats are explained below.

Short form: flag [1] pl [1] cc[1] tfm [3] dm[1] w[1] h[1] hoff [+1] voff [+1]. If this format of
the character preamble is used, the above parameters must all fit in the indicated number of bytes,
signed or unsigned as indicated. Almost all of the standard TEX font characters fit; the few
exceptions are fonts such as cminch.

Extended short form: flag [1] pl [2] cc[1] tfm [3] dm[2] w[2] h[2] hoff [+2] voff [+2]. Larger
characters use this extended format.

Long form: flag [1] pl [4] cc[4] tfm [4] dx [4] dy [4] w[4] h[4] hoff [4] voff [4]. This is the
general format that allows all of the parameters of the GF file format, including vertical
escapement.

The flag parameter is the flag byte. The parameter pl (packet length) contains the offset of
the byte following this character descriptor, with respect to the beginning of the tfm width
parameter. This is given so a PK reading program can, once it has read the flag byte, packet
length, and character code (cc), skip over the character by simply reading this many more bytes.
For the two short forms of the character preamble, the last two bits of the flag byte should be
considered the two most-significant bits of the packet length. For the short format, the true
packet length might be calculated as (flag mod 4) * 256 + pl; for the short extended format, it
might be calculated as (flag mod 4) * 65536 + pl.

The w parameter is the width and the h parameter is the height in pixels of the minimum
bounding box. The dx and dy parameters are the horizontal and vertical escapements,
respectively. In the short formats, dy is assumed to be zero and dm is dx but in
pixels; in the long format, dx and dy are both in pixels multiplied by 2**16. The hoff
is the horizontal offset from the upper left pixel to the reference pixel; the voff is the
vertical offset. They are both given in pixels, with right and down being positive. The reference
pixel is the pixel that occupies the unit square in METAFONT; the METAFONT reference point is the
lower left hand corner of this pixel.

4.3. Virtual Font File Format

The Virtual Font file format is described in the vftovp.web file from Web2C. Part of this
documentation comes from this file.

The idea behind VF files is that a general interface mechanism is needed to switch between the
myriad font layouts provided by different suppliers of typesetting equipment. Without such
mechanism, people must go to great lengths writing inscrutable macros whenever they want to use
typesetting conventions based on one font layout in connection with actual fonts that have another
layout. This puts an extra burden on the typesetting system, interfering with the other things it
needs to do (like kerning, hyphenation, and ligature formation).

These difficulties go away when we have a “virtual font,” i.e., a font that exists in a logical
sense but not a physical sense. A typesetting system like TEX can do its job without knowing where
the actual characters come from; a device driver can then do its job by letting a VF file tell what
actual characters correspond the characters TEX imagined were present. The actual characters can be
shifted and/or magnified and/or combined with other characters from many different fonts. A virtual
font can even make use of characters from virtual fonts, including itself.

Virtual fonts also allow convenient character substitutions for proofreading purposes, when fonts
designed for one output device are unavailable on another.

A VF file is organised as a stream of 8-bit bytes, using conventions borrowed from DVI and PK files.
Thus, a device driver that knows about DVI and PK format will already contain most of the mechanisms
necessary to process VF files. We shall assume that DVI format is understood; the conventions in the
DVI documentation (see, for example, TEX: The Program, part 31) are adopted here to define VF
format.

A preamble appears at the beginning, followed by a sequence of character definitions, followed by a
postamble. More precisely, the first byte of every VF file must be the first byte of the following
“preamble command”: pre 247 i[1] k[1] x[k] cs [4] ds [4]. Here i is the identification byte
of VF, currently 202. The string x is merely a comment, usually indicating the source of the VF
file. Parameters cs and ds are respectively the check sum and the design size of the virtual
font; they should match the first two words in the header of the TFM file, as described below.

After the pre command, the preamble continues with font definitions; every font needed to
specify “actual” characters in later set char commands is defined here. The font definitions are
exactly the same in VF files as they are in DVI files, except that the scaled size s is relative
and the design size d is absolute:

	fnt def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 ≤ k < 256.

	fnt def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 ≤ k < 65536.

	fnt def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 ≤ k < 2**24.

	fnt def4 246 k[4] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where −2**31 ≤ k < 2**31.

These font numbers k are “local”; they have no relation to font numbers defined in the DVI file
that uses this virtual font. The dimension s, which represents the scaled size of the local font
being defined, is a fix word relative to the design size of the virtual font. Thus if the local font
is to be used at the same size as the design size of the virtual font itself, s will be the
integer value 2**20. The value of s must be positive and less than 2**24 (thus less than 16 when
considered as a fix word). The dimension d is a fix word in units of printer’s points; hence it is
identical to the design size found in the corresponding TFM file.

The preamble is followed by zero or more character packets, where each character packet begins with
byte that is < 243. Character packets have two formats, one long and one short:

	long char 242 pl [4] cc [4] tfm [4] dvi [pl]. This long form specifies a virtual character in the general case.

	short char0 ... short char241 pl [1] cc [1] tfm [3] dvi [pl]. This short form specifies a
virtual character in the common case when 0 ≤ pl < 242 and 0 ≤ cc < 256 and 0 ≤ tfm < 2**24.

Here pl denotes the packet length following the tfm value; cc is the character code; and
tfm is the character width copied from the TFM file for this virtual font. There should be at
most one character packet having any given cc code.

The dvi bytes are a sequence of complete DVI commands, properly nested with respect to push and
pop. All DVI operations are permitted except bop, eop, and commands with opcodes
≥ 243. Font selection commands (fnt_num0 through fnt4) must refer to fonts defined in the
preamble.

Dimensions that appear in the DVI instructions are analogous to fix word quantities; i.e., they are
integer multiples of 2**−20 times the design size of the virtual font. For example, if the virtual
font has design size 10 pt, the DVI command to move down 5 pt would be a down instruction with
parameter 2**19. The virtual font itself might be used at a different size, say 12 pt; then that
down instruction would move down 6 pt instead. Each dimension must be less than 2**24 in absolute
value.

Device drivers processing VF files treat the sequences of dvi bytes as subroutines or macros,
implicitly enclosing them with push and pop. Each subroutine begins with w = x = y = z = 0, and
with current font f the number of the first-defined in the preamble (undefined if there’s no
such font). After the dvi commands have been performed, the h and v position registers of
DVI format and the current font f are restored to their former values; then, if the subroutine
has been invoked by a set char or set command, h is increased by the TFM width (properly
scaled)—just as if a simple character had been typeset.

	long char = 242 { VF command for general character packet }

	set char 0 = 0 { DVI command to typeset character 0 and move right }

	set1 = 128 { typeset a character and move right }

	set rule = 132 { typeset a rule and move right }

	put1 = 133 { typeset a character }

	put rule = 137 { typeset a rule }

	nop = 138 { no operation }

	push = 141 { save the current positions }

	pop = 142 { restore previous positions }

	right1 = 143 { move right }

	w0 = 147 { move right by w }

	w1 = 148 { move right and set w }

	x0 = 152 { move right by x }

	x1 = 153 { move right and set x }

	down1 = 157 { move down }

	y0 = 161 { move down by y }

	y1 = 162 { move down and set y }

	z0 = 166 { move down by z }

	z1 = 167 { move down and set z }

	fnt num 0 = 171 { set current font to 0 }

	fnt1 = 235 { set current font }

	xxx1 = 239 { extension to DVI primitives }

	xxx4 = 242 { potentially long extension to DVI primitives }

	fnt def1 = 243 { define the meaning of a font number }

	pre = 247 { preamble }

	post = 248 { postamble beginning }

	improper DVI for VF ≡ 139, 140, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255

The character packets are followed by a trivial postamble, consisting of one or more bytes all equal
to post (248). The total number of bytes in the file should be a multiple of 4.

4.4. Relevant Softwares

Table of Contents

	Relevant Softwares
	TeX Engine

	Scientific Plotting

	DVI to Image Converter

	DVI Viewer

	DVI Tools

	TeX Fonts

	Font Viewer

4.4.1. TeX Engine

	LuaTeX - an extended version of pdfTeX using Lua as an embedded scripting language

http://www.luatex.org

4.4.2. Scientific Plotting

	Matplotlib - Python 2D plotting library

http://matplotlib.sourceforge.net

cf. dviread.py

4.4.3. DVI to Image Converter

	Dvipng - A DVI-to-PNG converter

http://savannah.nongnu.org/projects/dvipng

	MathTran - Translation of math content

http://www.mathtran.org

http://sourceforge.net/projects/mathtran

	jsMath - A Method of Including Mathematics in Web Pages

http://www.math.union.edu/~dpvc/jsmath

	Texvc - MediaWiki TeX Converter

http://www.mediawiki.org/wiki/Manual:Enable_TeX

http://www.mediawiki.org/wiki/Texvc

4.4.4. DVI Viewer

	Okular - universal document viewer based on KPDF for KDE 4

http://okular.kde.org/

	Evince - document viewer for multiple document formats

http://projects.gnome.org/evince/?guid=ON

	xdvi - program for displaying DVI files on X-Window

http://math.berkeley.edu/~vojta/xdvi.html

http://xdvi.sourceforge.net

	Active-DVI - Unix-platform DVI previewer and a programmable presenter for slides written in LaTeX

http://advi.inria.fr

4.4.5. DVI Tools

	Hacking DVI files: Birth of DVIasm

http://www.ctan.org/tex-archive/dviware/dviasm

http://www.tug.org/pracjourn/2007-1/cho/cho.pdf

4.4.6. TeX Fonts

	The Latin Modern (LM) Family of Fonts

http://www.gust.org.pl/projects/e-foundry/latin-modern

	The TeX Gyre (TG) Collection of Fonts

http://www.gust.org.pl/projects/e-foundry/tex-gyre

4.4.7. Font Viewer

	FontMatrix

http://www.fontmatrix.net IS DEAD

http://en.wikipedia.org/wiki/Fontmatrix

http://www.ohloh.net/p/fontmatrix

	TFMPK - TEX’s Fonts Viewer

http://www.medini.org/software/tfmpk

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 PyDvi	

 	
 	
 PyDvi.Config.ConfigInstall	

 	
 	
 PyDvi.Dvi.DviMachine	

 	
 	
 PyDvi.Dvi.DviParser	

 	
 	
 PyDvi.Font.AfmParser	

 	
 	
 PyDvi.Font.Encoding	

 	
 	
 PyDvi.Font.Font	

 	
 	
 PyDvi.Font.FontMap	

 	
 	
 PyDvi.Font.Tfm	

 	
 	
 PyDvi.Font.TfmParser	

 	
 	
 PyDvi.Font.VirtualCharacter	

 	
 	
 PyDvi.Font.VirtualFont	

 	
 	
 PyDvi.Font.VirtualFontParser	

 	
 	
 PyDvi.Kpathsea	

 	
 	
 PyDvi.Logging.Logging	

 	
 	
 PyDvi.OpcodeParser	

 	
 	
 PyDvi.TexDaemon	

 	
 	
 PyDvi.TeXUnit	

 	
 	
 PyDvi.Tools.DaemonSubprocess	

 	
 	
 PyDvi.Tools.EnumFactory	

 	
 	
 PyDvi.Tools.FuncTools	

 	
 	
 PyDvi.Tools.Interval	

 	
 	
 PyDvi.Tools.Logging	

 	
 	
 PyDvi.Tools.Path	

 	
 	
 PyDvi.Tools.RevisionVersion	

 	
 	
 PyDvi.Tools.Stream	

 	
 	
 PyDvi.Tools.TexCommentedFile	

 	
 	
 PyDvi.Version	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

_

 	
 	_adjust_opcode_counts() (PyDvi.Dvi.DviMachine.DviMachine method)

 	_adjust_opcode_counts_for_virtual_characters() (PyDvi.Dvi.DviMachine.DviMachine method)

 	_check_arguments() (PyDvi.Tools.Interval.Interval method)

 	_find_font() (PyDvi.Font.Font.Font method)

 	_find_tfm() (PyDvi.Font.Font.Font method)

 	_get_values() (PyDvi.Font.AfmParser.AfmParser method)

 	_init_opcode_parser() (PyDvi.OpcodeParser.OpcodeParserSet method)

 	_init_parameter_readers() (PyDvi.OpcodeParser.OpcodeParser method)

 	_intersection() (PyDvi.Tools.Interval.Interval static method)

 	_load_dvi_fonts() (PyDvi.Dvi.DviMachine.DviMachine method)

 	_logger (PyDvi.Dvi.DviMachine.DviMachine attribute)

 	(PyDvi.Dvi.DviParser.DviParser attribute)

 	(PyDvi.Font.AfmParser.AfmParser attribute)

 	(PyDvi.Font.VirtualFontParser.VirtualFontParser attribute)

 	_parse() (PyDvi.Font.AfmParser.AfmParser method)

 	_parse_effects() (PyDvi.Font.FontMap.FontMap static method)

 	_parse_end() (PyDvi.Font.AfmParser.AfmParser method)

 	_parse_glyph_names() (PyDvi.Font.Encoding.Encoding method)

 	_parse_key_values() (PyDvi.Font.AfmParser.AfmParser method)

 	_parse_key_values_list() (PyDvi.Font.AfmParser.AfmParser method)

 	_parse_line() (PyDvi.Font.FontMap.FontMap method)

 	_parse_name() (PyDvi.Font.Encoding.Encoding method)

 	_parse_start() (PyDvi.Font.AfmParser.AfmParser method)

 	
 	_position_in_table() (PyDvi.Font.TfmParser.TfmParser method)

 	_print_summary() (PyDvi.Font.TfmParser.TfmParser method)

 	_process() (PyDvi.TexDaemon.TexDaemon method)

 	_process_char() (PyDvi.Font.TfmParser.TfmParser method)

 	_process_file() (PyDvi.Font.VirtualFontParser.VirtualFontParser method)

 	_process_pages_backward() (PyDvi.Dvi.DviParser.DviParser method)

 	_process_postambule() (PyDvi.Dvi.DviParser.DviParser method)

 	_process_preambule() (PyDvi.Dvi.DviParser.DviParser method)

 	(PyDvi.Font.VirtualFontParser.VirtualFontParser method)

 	_read_char_info() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_characters() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_extensible_recipe() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_fix_word_in_table() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_font_parameters() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_four_byte_numbers_in_table() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_header() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_lengths() (PyDvi.Font.TfmParser.TfmParser method)

 	_read_lig_kern_programs() (PyDvi.Font.TfmParser.TfmParser method)

 	_register_entry() (PyDvi.Font.FontMap.FontMap method)

 	_reset() (PyDvi.Dvi.DviMachine.DviMachine method)

 	(PyDvi.Dvi.DviParser.DviParser method)

 	_seek_to_table() (PyDvi.Font.TfmParser.TfmParser method)

 	_set_preambule_data() (PyDvi.Font.VirtualFont.VirtualFont method)

 	_union() (PyDvi.Tools.Interval.Interval static method)

A

 	
 	AbstractStream (class in PyDvi.Tools.Stream)

 	add_lig_kern() (PyDvi.Font.Tfm.Tfm method)

 	
 	AfmParser (class in PyDvi.Font.AfmParser)

 	append_page() (PyDvi.Dvi.DviMachine.DviProgam method)

 	area() (PyDvi.Tools.Interval.Interval2D method)

B

 	
 	BadAfmFile

 	base_opcode (PyDvi.Dvi.DviParser.OpcodeParser_fnt_def attribute)

 	(PyDvi.Dvi.DviParser.OpcodeParser_xxx attribute)

 	basename() (PyDvi.Font.Font.Font method)

 	
 	begin_run_page() (PyDvi.Dvi.DviMachine.DviMachine method)

 	boolean() (in module PyDvi.Font.AfmParser)

 	bounding_box() (PyDvi.Tools.Interval.Interval2D method)

 	ByteStream (class in PyDvi.Tools.Stream)

C

 	
 	char_scaled_depth() (PyDvi.Dvi.DviMachine.DviFont method)

 	char_scaled_height() (PyDvi.Dvi.DviMachine.DviFont method)

 	char_scaled_width() (PyDvi.Dvi.DviMachine.DviFont method)

 	chr() (PyDvi.Font.Tfm.TfmChar method)

 	compute_page_bounding_box() (PyDvi.Dvi.DviMachine.DviMachine method)

 	concatenate_lines() (PyDvi.Tools.TexCommentedFile.TexCommentedFile method)

 	config_directory (PyDvi.Config.ConfigInstall.Path attribute)

 	
 	copy() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	count_opcodes() (PyDvi.Dvi.DviMachine.DviMachine method)

 	current_colour (PyDvi.Dvi.DviMachine.DviMachine attribute)

 	current_dvi_font (PyDvi.Dvi.DviMachine.DviMachine attribute)

 	current_font (PyDvi.Dvi.DviMachine.DviMachine attribute)

 	current_font_id (PyDvi.Dvi.DviMachine.DviMachine attribute)

D

 	
 	DaemonSubprocess (class in PyDvi.Tools.DaemonSubprocess)

 	default_config_file (PyDvi.Config.ConfigInstall.Logging attribute)

 	directories (PyDvi.Config.ConfigInstall.Logging attribute)

 	dpi2mm() (in module PyDvi.TeXUnit)

 	dvi_font_iterator() (PyDvi.Dvi.DviMachine.DviProgam method)

 	DviColourBlack (class in PyDvi.Dvi.DviMachine)

 	DviColourCMYK (class in PyDvi.Dvi.DviMachine)

 	DviColourGray (class in PyDvi.Dvi.DviMachine)

 	
 	DviColourRGB (class in PyDvi.Dvi.DviMachine)

 	DviFont (class in PyDvi.Dvi.DviMachine)

 	DviMachine (class in PyDvi.Dvi.DviMachine)

 	DviParser (class in PyDvi.Dvi.DviParser)

 	DviProgam (class in PyDvi.Dvi.DviMachine)

 	DviProgramPage (class in PyDvi.Dvi.DviMachine)

 	DviSimplifyMachine (class in PyDvi.Dvi.DviMachine)

 	DviSubroutine (class in PyDvi.Dvi.DviMachine)

 	DviSubroutineParser (class in PyDvi.Dvi.DviParser)

E

 	
 	Encoding (class in PyDvi.Font.Encoding)

 	end_of_stream() (PyDvi.Tools.Stream.ByteStream method)

 	end_run_page() (PyDvi.Dvi.DviMachine.DviMachine method)

 	enlarge() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	
 	EnumFactory() (in module PyDvi.Tools.EnumFactory)

 	ExplicitEnumFactory() (in module PyDvi.Tools.EnumFactory)

 	extension (PyDvi.Font.Font.Font attribute)

 	(PyDvi.Font.VirtualFont.VirtualFont attribute)

F

 	
 	fifos (PyDvi.TexDaemon.TexDaemon attribute)

 	(PyDvi.Tools.DaemonSubprocess.DaemonSubprocess attribute)

 	FileStream (class in PyDvi.Tools.Stream)

 	find() (in module PyDvi.Tools.Path)

 	(PyDvi.Config.ConfigInstall.Logging static method)

 	Font (class in PyDvi.Font.Font)

 	font_type (PyDvi.Font.Font.Font attribute)

 	(PyDvi.Font.VirtualFont.VirtualFont attribute)

 	
 	font_type_string (PyDvi.Font.Font.Font attribute)

 	(PyDvi.Font.VirtualFont.VirtualFont attribute)

 	font_types (in module PyDvi.Font.Font)

 	FontMap (class in PyDvi.Font.FontMap)

 	FontMapEntry (class in PyDvi.Font.FontMap)

 	format_card() (in module PyDvi.Tools.Logging)

G

 	
 	get_filename_extension() (in module PyDvi.Tools.FuncTools)

 	get_font() (PyDvi.Dvi.DviMachine.DviProgam method)

 	
 	get_lig_kern_program() (PyDvi.Font.Tfm.Tfm method)

 	(PyDvi.Font.Tfm.TfmChar method)

H

 	
 	hex() (in module PyDvi.Font.AfmParser)

I

 	
 	in2mm() (in module PyDvi.TeXUnit)

 	in2pt() (in module PyDvi.TeXUnit)

 	in2sp() (in module PyDvi.TeXUnit)

 	intersect() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	Interval (class in PyDvi.Tools.Interval)

 	Interval2D (class in PyDvi.Tools.Interval)

 	
 	IntervalInt (class in PyDvi.Tools.Interval)

 	IntervalInt2D (class in PyDvi.Tools.Interval)

 	is_current_font_virtual (PyDvi.Dvi.DviMachine.DviMachine attribute)

 	is_empty() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	is_included_in() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	is_virtual (PyDvi.Font.Font.Font attribute)

K

 	
 	kill() (PyDvi.Tools.DaemonSubprocess.DaemonSubprocess method)

 	
 	kpsewhich() (in module PyDvi.Kpathsea)

L

 	
 	length() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.IntervalInt method)

 	
 	load_dvi_fonts() (PyDvi.Font.VirtualFont.VirtualFont method)

 	load_dvi_program() (PyDvi.Dvi.DviMachine.DviMachine method)

 	Logging (class in PyDvi.Config.ConfigInstall)

M

 	
 	make_args() (PyDvi.TexDaemon.TexDaemon method)

 	(PyDvi.Tools.DaemonSubprocess.DaemonSubprocess method)

 	make_nonblocking() (in module PyDvi.Tools.DaemonSubprocess)

 	
 	middle() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	mm2in() (in module PyDvi.TeXUnit)

N

 	
 	next_larger_tfm_char() (PyDvi.Font.Tfm.TfmChar method)

O

 	
 	Opcode_down (class in PyDvi.Dvi.DviMachine)

 	Opcode_font (class in PyDvi.Dvi.DviMachine)

 	opcode_parser_set (PyDvi.Font.VirtualFontParser.VirtualFontParser attribute)

 	Opcode_pop (class in PyDvi.Dvi.DviMachine)

 	Opcode_pop_colour (class in PyDvi.Dvi.DviMachine)

 	Opcode_push (class in PyDvi.Dvi.DviMachine)

 	Opcode_push_colour (class in PyDvi.Dvi.DviMachine)

 	Opcode_put_char (class in PyDvi.Dvi.DviMachine)

 	Opcode_put_rule (class in PyDvi.Dvi.DviMachine)

 	Opcode_right (class in PyDvi.Dvi.DviMachine)

 	Opcode_set_char (class in PyDvi.Dvi.DviMachine)

 	Opcode_set_rule (class in PyDvi.Dvi.DviMachine)

 	Opcode_w (class in PyDvi.Dvi.DviMachine)

 	
 	Opcode_w0 (class in PyDvi.Dvi.DviMachine)

 	Opcode_x (class in PyDvi.Dvi.DviMachine)

 	Opcode_x0 (class in PyDvi.Dvi.DviMachine)

 	Opcode_xxx (class in PyDvi.Dvi.DviMachine)

 	Opcode_y (class in PyDvi.Dvi.DviMachine)

 	Opcode_y0 (class in PyDvi.Dvi.DviMachine)

 	Opcode_z (class in PyDvi.Dvi.DviMachine)

 	Opcode_z0 (class in PyDvi.Dvi.DviMachine)

 	OpcodeParser (class in PyDvi.OpcodeParser)

 	OpcodeParser_fnt_def (class in PyDvi.Dvi.DviParser)

 	OpcodeParser_font (class in PyDvi.Dvi.DviParser)

 	OpcodeParser_set_char (class in PyDvi.Dvi.DviParser)

 	OpcodeParser_xxx (class in PyDvi.Dvi.DviParser)

 	OpcodeParserSet (class in PyDvi.OpcodeParser)

P

 	
 	paint_char() (PyDvi.Dvi.DviMachine.DviMachine method)

 	paint_rule() (PyDvi.Dvi.DviMachine.DviMachine method)

 	parent_directory_of() (in module PyDvi.Tools.Path)

 	parse() (PyDvi.Dvi.DviParser.DviSubroutineParser method)

 	(PyDvi.Font.AfmParser.AfmParser static method)

 	(PyDvi.Font.TfmParser.TfmParser static method)

 	(PyDvi.Font.VirtualFontParser.VirtualFontParser static method)

 	Path (class in PyDvi.Config.ConfigInstall)

 	pop_colour() (PyDvi.Dvi.DviMachine.DviMachine method)

 	pop_registers() (PyDvi.Dvi.DviMachine.DviMachine method)

 	print_card() (in module PyDvi.Tools.Logging)

 	print_header() (PyDvi.Font.Font.Font method)

 	print_object() (PyDvi.Tools.Interval.Interval method)

 	(PyDvi.Tools.Interval.Interval2D method)

 	print_program() (PyDvi.Dvi.DviMachine.DviProgramPage method)

 	print_summary() (PyDvi.Dvi.DviMachine.DviProgam method)

 	(PyDvi.Font.Encoding.Encoding method)

 	(PyDvi.Font.Font.Font method)

 	(PyDvi.Font.FontMap.FontMap method)

 	(PyDvi.Font.FontMap.FontMapEntry method)

 	(PyDvi.Font.Tfm.Tfm method)

 	(PyDvi.Font.Tfm.TfmChar method)

 	(PyDvi.Font.VirtualFont.VirtualFont method)

 	printable (PyDvi.Font.Tfm.TfmChar attribute)

 	process() (PyDvi.TexDaemon.TexDaemon method)

 	process_page() (PyDvi.Dvi.DviParser.DviParser method)

 	process_page_forward() (PyDvi.Dvi.DviParser.DviParser method)

 	process_page_xxx_opcodes() (PyDvi.Dvi.DviMachine.DviSimplifyMachine method)

 	process_stream() (PyDvi.Dvi.DviParser.DviParser method)

 	pt2in() (in module PyDvi.TeXUnit)

 	pt2mm() (in module PyDvi.TeXUnit)

 	
 	pt2sp() (in module PyDvi.TeXUnit)

 	push_colour() (PyDvi.Dvi.DviMachine.DviMachine method)

 	push_registers() (PyDvi.Dvi.DviMachine.DviMachine method)

 	pydvi (in module PyDvi.Version)

 	PyDvi.Config.ConfigInstall (module)

 	PyDvi.Dvi.DviMachine (module)

 	PyDvi.Dvi.DviParser (module)

 	PyDvi.Font.AfmParser (module)

 	PyDvi.Font.Encoding (module)

 	PyDvi.Font.Font (module)

 	PyDvi.Font.FontMap (module)

 	PyDvi.Font.Tfm (module)

 	PyDvi.Font.TfmParser (module)

 	PyDvi.Font.VirtualCharacter (module)

 	PyDvi.Font.VirtualFont (module)

 	PyDvi.Font.VirtualFontParser (module)

 	PyDvi.Kpathsea (module)

 	PyDvi.Logging.Logging (module)

 	PyDvi.OpcodeParser (module)

 	PyDvi.TexDaemon (module)

 	PyDvi.TeXUnit (module)

 	PyDvi.Tools.DaemonSubprocess (module)

 	PyDvi.Tools.EnumFactory (module)

 	PyDvi.Tools.FuncTools (module)

 	PyDvi.Tools.Interval (module)

 	PyDvi.Tools.Logging (module)

 	PyDvi.Tools.Path (module)

 	PyDvi.Tools.RevisionVersion (module)

 	PyDvi.Tools.Stream (module)

 	PyDvi.Tools.TexCommentedFile (module)

 	PyDvi.Version (module)

 	pydvi_module_directory (PyDvi.Config.ConfigInstall.Path attribute)

R

 	
 	read() (PyDvi.Tools.Stream.AbstractStream method)

 	(PyDvi.Tools.Stream.StandardStream method)

 	read_bcpl() (PyDvi.Tools.Stream.AbstractStream method)

 	read_big_endian_number() (PyDvi.Tools.Stream.AbstractStream method)

 	read_byte_numbers() (PyDvi.Tools.Stream.AbstractStream method)

 	read_bytes() (PyDvi.Tools.Stream.AbstractStream method)

 	read_fix_word() (PyDvi.Tools.Stream.AbstractStream method)

 	read_four_byte_numbers() (PyDvi.Tools.Stream.AbstractStream method)

 	read_parameters() (PyDvi.Dvi.DviParser.OpcodeParser_fnt_def method)

 	(PyDvi.Dvi.DviParser.OpcodeParser_font method)

 	(PyDvi.Dvi.DviParser.OpcodeParser_set_char method)

 	(PyDvi.Dvi.DviParser.OpcodeParser_xxx method)

 	(PyDvi.OpcodeParser.OpcodeParser method)

 	read_signed_byte1() (PyDvi.Tools.Stream.AbstractStream method)

 	read_signed_byte2() (PyDvi.Tools.Stream.AbstractStream method)

 	read_signed_byte3() (PyDvi.Tools.Stream.AbstractStream method)

 	read_signed_byte4() (PyDvi.Tools.Stream.AbstractStream method)

 	read_signed_byten (PyDvi.Tools.Stream.AbstractStream attribute)

 	read_three_byte_numbers() (PyDvi.Tools.Stream.AbstractStream method)

 	read_unsigned_byte1() (PyDvi.Tools.Stream.AbstractStream method)

 	read_unsigned_byte2() (PyDvi.Tools.Stream.AbstractStream method)

 	read_unsigned_byte3() (PyDvi.Tools.Stream.AbstractStream method)

 	read_unsigned_byte4() (PyDvi.Tools.Stream.AbstractStream method)

 	read_unsigned_byten (PyDvi.Tools.Stream.AbstractStream attribute)

 	
 	register_character() (PyDvi.Font.VirtualFont.VirtualFont method)

 	register_font() (PyDvi.Dvi.DviMachine.DviProgam method)

 	(PyDvi.Font.VirtualFont.VirtualFont method)

 	registers (PyDvi.Dvi.DviMachine.DviMachine attribute)

 	remove_enclosing_new_line() (in module PyDvi.Tools.Logging)

 	repeat_call() (in module PyDvi.Tools.FuncTools)

 	restart() (PyDvi.Tools.DaemonSubprocess.DaemonSubprocess method)

 	RevisionVersion (class in PyDvi.Tools.RevisionVersion)

 	run() (PyDvi.Dvi.DviMachine.Opcode_down method)

 	(PyDvi.Dvi.DviMachine.Opcode_font method)

 	(PyDvi.Dvi.DviMachine.Opcode_pop method)

 	(PyDvi.Dvi.DviMachine.Opcode_pop_colour method)

 	(PyDvi.Dvi.DviMachine.Opcode_push method)

 	(PyDvi.Dvi.DviMachine.Opcode_push_colour method)

 	(PyDvi.Dvi.DviMachine.Opcode_right method)

 	(PyDvi.Dvi.DviMachine.Opcode_w method)

 	(PyDvi.Dvi.DviMachine.Opcode_w0 method)

 	(PyDvi.Dvi.DviMachine.Opcode_x method)

 	(PyDvi.Dvi.DviMachine.Opcode_x0 method)

 	(PyDvi.Dvi.DviMachine.Opcode_y method)

 	(PyDvi.Dvi.DviMachine.Opcode_y0 method)

 	(PyDvi.Dvi.DviMachine.Opcode_z method)

 	(PyDvi.Dvi.DviMachine.Opcode_z0 method)

 	run_page() (PyDvi.Dvi.DviMachine.DviMachine method)

 	run_subroutine() (PyDvi.Dvi.DviMachine.DviMachine method)

S

 	
 	scale (PyDvi.Tools.RevisionVersion.RevisionVersion attribute)

 	scaled_depth() (PyDvi.Font.Tfm.TfmChar method)

 	scaled_dimensions() (PyDvi.Font.Tfm.TfmChar method)

 	scaled_height() (PyDvi.Font.Tfm.TfmChar method)

 	scaled_width() (PyDvi.Font.Tfm.TfmChar method)

 	seek() (PyDvi.Tools.Stream.AbstractStream method)

 	(PyDvi.Tools.Stream.StandardStream method)

 	set_font_parameters() (PyDvi.Font.Tfm.Tfm method)

 	set_math_extension_parameters() (PyDvi.Font.Tfm.Tfm method)

 	set_math_symbols_parameters() (PyDvi.Font.Tfm.Tfm method)

 	set_paper_size() (PyDvi.Dvi.DviMachine.DviProgramPage method)

 	set_postambule_data() (PyDvi.Dvi.DviMachine.DviProgam method)

 	set_preambule_data() (PyDvi.Dvi.DviMachine.DviProgam method)

 	setup_logging() (in module PyDvi.Logging.Logging)

 	
 	simplify() (PyDvi.Dvi.DviMachine.DviSimplifyMachine method)

 	simplify_dvi_program() (PyDvi.Dvi.DviMachine.DviMachine method)

 	simplify_page() (PyDvi.Dvi.DviMachine.DviSimplifyMachine method)

 	size() (PyDvi.Tools.Interval.Interval2D method)

 	sort_font_class() (in module PyDvi.Font.Font)

 	sp2dpi() (in module PyDvi.TeXUnit)

 	sp2in() (in module PyDvi.TeXUnit)

 	sp2mm() (in module PyDvi.TeXUnit)

 	sp2pt() (in module PyDvi.TeXUnit)

 	StandardStream (class in PyDvi.Tools.Stream)

 	start() (PyDvi.TexDaemon.TexDaemon method)

 	(PyDvi.Tools.DaemonSubprocess.DaemonSubprocess method)

 	stop() (PyDvi.Tools.DaemonSubprocess.DaemonSubprocess method)

 	SubprocessError

 	subroutine (PyDvi.Font.VirtualCharacter.VirtualCharacter attribute)

T

 	
 	tell() (PyDvi.Tools.Stream.AbstractStream method)

 	(PyDvi.Tools.Stream.StandardStream method)

 	TexCommentedFile (class in PyDvi.Tools.TexCommentedFile)

 	TexDaemon (class in PyDvi.TexDaemon)

 	Tfm (class in PyDvi.Font.Tfm)

 	TfmChar (class in PyDvi.Font.Tfm)

 	TfmExtensibleChar (class in PyDvi.Font.Tfm)

 	TfmKern (class in PyDvi.Font.Tfm)

 	TfmLigature (class in PyDvi.Font.Tfm)

 	
 	TfmParser (class in PyDvi.Font.TfmParser)

 	to_absolute_path() (in module PyDvi.Tools.Path)

 	to_fix_word() (in module PyDvi.Tools.Stream)

 	to_index() (PyDvi.Font.Encoding.Encoding method)

 	to_name() (PyDvi.Font.Encoding.Encoding method)

 	to_opcode() (PyDvi.OpcodeParser.OpcodeParser method)

 	transform_xxx_colour() (PyDvi.Dvi.DviMachine.DviSimplifyMachine method)

 	transform_xxx_paper_orientation() (PyDvi.Dvi.DviMachine.DviSimplifyMachine method)

 	transform_xxx_paper_size() (PyDvi.Dvi.DviMachine.DviSimplifyMachine method)

U

 	
 	update_font_id_map() (PyDvi.Font.VirtualFont.VirtualFont method)

V

 	
 	VirtualCharacter (class in PyDvi.Font.VirtualCharacter)

 	
 	VirtualFont (class in PyDvi.Font.VirtualFont)

 	VirtualFontParser (class in PyDvi.Font.VirtualFontParser)

W

 	
 	word_ptr() (PyDvi.Font.TfmParser.TfmParser static method)

X

 	
 	xxx_colour (PyDvi.Dvi.DviMachine.DviSimplifyMachine attribute)

 	
 	xxx_landscape (PyDvi.Dvi.DviMachine.DviSimplifyMachine attribute)

 	xxx_papersize (PyDvi.Dvi.DviMachine.DviSimplifyMachine attribute)

Z

 	
 	zero_length() (PyDvi.Tools.Interval.Interval method)

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/dvi-gl-viewer.scaled.png
Fie_ Halp =
< ane

1 Maxwell’s Equations

E<(1S:i///pdv
o0 €0 O

Gauss’s law:

v.E="
€o
Gauss’s law for magnetism:
B-dS=0
90
V-B=0

Welcens & the Rarduare accalarssd DV viewer of YOV (6.6, 42.1) mm. 2%6.7%

_static/up.png

nav.xhtml

 Table of Contents

 		Introduction

 		Installation

 		Dependencies

 		Installation from PyPi Repository

 		Installation from Source

 		Examples

 		API Documentation

 		PyDvi

 		Config

 		Dvi

 		Font

 		Kpathsea

 		Logging

 		OpcodeParser

 		TeXUnit

 		TexDaemon

 		Tools

 		Version

 		PyDviPng

 		Config

 		DviMachine

 		Logging

 		PyDviGui

 		Config

 		DviGlViewer

 		DviViewer

 		FontViewer

 		Logging

 		Tools

 		Widgets

 		ui

 		Indexes

 		Bibliography

 		Device-Independent File Format

 		Packet Font File Format

 		Virtual Font File Format

 		Relevant Softwares

 		TeX Engine

 		Scientific Plotting

 		DVI to Image Converter

 		DVI Viewer

 		DVI Tools

 		TeX Fonts

 		Font Viewer

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/down.png

_static/comment-close.png

